Effects of the applied organic loading rate on the selection of a PHA-storing biomass in a Sequencing Batch Reactor with uncoupled Carbon and Nitrogen feeding

1L. Lorini, 2C. Marzo, 1M. Villano, 1M. Majone, 3F. Valentino

1Department of Chemistry, La Sapienza University of Rome
2Chemical engineering and food technology, University of Cádiz, Puerto Real, Spain
3Department of Environmental Science, Informatics and Statistics, Ca’ Foscari University of Venice

lorini.laura@uniroma1.it
Polyhydroxyalkanoates (PHA)

Product related Pro’s
- Family of copolymers with tunable composition
- Main constituent of several bioplastics

- Biodegradable commodity film
- Packaging interlayer film
- Specialty durables (such as electronics)
- Slow C-release system for groundwater remediation

(Kunansudari, Exp Polym Let 2010)
Microbial mixed cultures process

Feedstock → Anaerobic Reactor → VFA → Aerobic Selection Reactor → PHA Production Reactor

Initial mixed consortium (activated sludge)

Enriched consortium (PHA-producing biomass)

VFA

End of the feast phase

feast-famine

O₂ (mg/L)

VFA - PHA (mgCOD/L)

t (min)
Aim of the study

Selection and enrichment of a PHA-producing biomass by applying an uncoupled C/N strategy

✓ Influence of the increasing applied OLR ➔
 4.25 gCOD/L d (Run A)
 8.50 gCOD/L d (Run B)
 12.75 gCOD/L d (Run C)

✓ Comparison with a previous study (Lorini et al., 2020)

✓ Exploring a higher OLR ➔
 18.0 gCOD/L d (Run D)

Selection of PHA-producing biomass (SBR)

Operative cycle (12 h)
- Feeding = 10 min
- Feast phase = 140 min
- Withdrawal = 3 min
- Nitrogen feeding = 5 min
- Famine phase = 562 min

Working volume = 1L

Organic load rate (OLR)
- 4.25; 8.5; 12.75; 18.0 gCOD/L d

VFA (85% Acetic acid; 15% Propionic acid)

T= 25°C
VFA, DO, PHA, NH$_4^+$ trends during a complete SBR cycle

Run B
OLR = 8.5 gCOD/L d

- Complete VFA depletion
- N-feeding

PHA and NH$_4^+$ consumption

Good selective pressure on the microbial consortium
Day of operation

End of the cycle
End of the feast

4.25 gCOD/Ld
8.5 gCOD/Ld
12.75 gCOD/Ld
18.0 gCOD/Ld
Comparison with the previous study

Dramatical decrease of the $Y_{P/S}$
<table>
<thead>
<tr>
<th>Parameters</th>
<th>Run A</th>
<th>Run B</th>
<th>Run C</th>
<th>Run D</th>
<th>(Lorini et al. 2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLR (gCOD/L d)</td>
<td>4.25</td>
<td>8.5</td>
<td>12.75</td>
<td>18</td>
<td>4.25 8.5 12.75</td>
</tr>
<tr>
<td>Feast phase/cycle length ratio (h/h, %)</td>
<td>29.2 ± 2.9</td>
<td>28.7 ± 1.5</td>
<td>29.4 ± 1.6</td>
<td>39.4 ± 2.3</td>
<td>21.0 ± 0.6</td>
</tr>
<tr>
<td>PHA concentration (end of cycle; mg/L)</td>
<td>76 ± 8</td>
<td>505 ± 40</td>
<td>1076 ± 121</td>
<td>1168 ± 256</td>
<td>235 ± 23</td>
</tr>
<tr>
<td>PHA concentration (end of feast; mg/L)</td>
<td>601 ± 50</td>
<td>1780 ± 80</td>
<td>3080 ± 121</td>
<td>2049 ± 110</td>
<td>807 ± 58</td>
</tr>
<tr>
<td>PHA content (end of feast; gPHA/gVSS)</td>
<td>0.34 ± 0.03</td>
<td>0.52 ± 0.03</td>
<td>0.62 ± 0.02</td>
<td>0.36 ± 0.05</td>
<td>0.40 ± 0.02</td>
</tr>
<tr>
<td>Storage Yield (YP/S feast; COD/COD)</td>
<td>0.42 ± 0.04</td>
<td>0.58 ± 0.03</td>
<td>0.64 ± 0.05</td>
<td>0.10 ± 0.06</td>
<td>0.56 ± 0.02</td>
</tr>
<tr>
<td>HV content (end of feast; gHV/gPHA)</td>
<td>0.15 ± 0.02</td>
<td>0.21 ± 0.01</td>
<td>0.25 ± 0.01</td>
<td>0.06 ± 0.02</td>
<td>0.25 ± 0.01</td>
</tr>
<tr>
<td>Nitrogen concentration (end of the cycle; mgN/L)</td>
<td>20 ± 3</td>
<td>34 ± 3</td>
<td>10 ± 3</td>
<td>101 ± 14</td>
<td>14 ± 2</td>
</tr>
</tbody>
</table>

Conclusions and future perspectives

- At OLR ranging between 4.25 - 12.75 g COD/L d, the feast/famine regime was easy established and a strong PHA-storing biomass selection was observed in line with the high storage yield.

- At very high OLR (18 g COD/L d) the system was unstable and the storing capacity of the microbial community was strongly affected.

- The high PHA content achieved may allow simplifying the process by skipping the traditional accumulation step.

- The exploitation of nutrient deficient organic waste (paper mill and olive oil mill wastewaters, cheese whey permeate or sugar-cane molasses) may be realized including a nitrogen and phosphorus addition in the famine phase.
Thanks for your attention