

National Technical University of Athens

THESSALONIKI2021

www.thessaloniki2021.uest.gr

Session XXIV Recovery of materials from wastewater & sludge – Sludge management

Effects of the applied organic loading rate on the selection of a PHA-storing biomass in a Sequencing Batch Reactor with uncoupled Carbon and Nitrogen feeding

<u>¹L. Lorini, ²C. Marzo, ¹M. Villano, ¹M. Majone, ³F. Valentino</u>

¹Department of Chemistry, La Sapienza University of Rome

²Chemical engineering and food technology, University of Cádiz, Puerto Real, Spain

³Department of Environmental Science, Informatics and Statistics, Ca' Foscari University of Venice

Polyhydroxyalkanoates (PHA)

CH_3 C₂H₅ H **Product related Pro's** Family of copolymers with tunable composition Main constituent of several bioplastics (R)-3HB (R)-3HV **Bio-based feedstock and Bio-based feedstock** biodegradability Bio-PE **Biopolymers** (PP/PVS), starch blends, biobased PET PLA, PHA non (Kunansudari, Exp Polym Let 2010) biodegradable, biodegradable, Biodegradable mechanical recycling with recycling organic waste commodity film PE, PP, PS, PVC, PBAT, PBS, PCL Packaging interlayer film \geq PET ecc. Specialty durables (such \geq **Biodegradability Oil-based plastics** as electronics) \geq Slow C-release system for groundwater remediation

Microbial mixed cultures process

Aim of the study

Selection and enrichment of a PHA-producing biomass by applying an uncoupled C/N strategy

 \checkmark Influence of the increasing applied OLR \rightarrow

4.25 gCOD/L d (Run A) 8.50 gCOD/L d (Run B) 12.75 gCOD/L d (Run C)

✓ *Comparison with a previous study* (Lorini et al., 2020)

✓ Exploring a higher OLR →

18.0 gCOD/L d (Run D)

Lorini L., Di Re F., Majone M., Valentino F., High rate selection of PHA accumulating mixed cultures in sequencing batch reactors with uncoupled carbon and nitrogen feeding, *New Biotechnology*, *56* (2020) 10.1016/j.nbt.2020.01.006.

Selection of PHA-producing biomass (SBR)

Operative cycle (12 h)

acid)

 $T=25^{\circ}C$

Comparison with the previous study

Parameters							
	Run A	Run B	Run C	Run D	(Lorini et al. 2020)		
OLR (gCOD/L d)	4.25	8.5	12.75	18	4.25	8.5	12.75
Feast phase/cycle length ratio (h/h, %)	29.2 ± 2.9	28.7 ± 1.5	29.4 ± 1.6	39.4 ± 2.3	21.0 ± 0.6	20.7 ± 0.3	27.1 ± 0.9
PHA concentration (end of cycle; mg/L)	76 ± 8	505 ± 40	1076 ± 121	1168 ± 256	235 ± 23	373 ± 30	658 ± 61
PHA concentration (end of feast; mg/L)	601 ± 50	1780 ± 80	3080 ± 121	2049 ± 110	807 ± 58	1639 ± 40	2389 ± 145
PHA content (end of feast; gPHA/gVSS)	0.34 ± 0.03	0.52 ± 0.03	0.62 ± 0.02	0.36 ± 0.05	0.40 ± 0.02	0.52 ± 0.02	0.53 ± 0.03
Storage Yield (Y _{P/S} ^{feast} ; COD/COD)	0.42 ± 0.04	0.58 ± 0.03	0.64 ± 0.05	0.10 ± 0.06	0.56 ± 0.02	0.57 ± 0.02	0.53 ± 0.03
HV content (end of feast; gHV/gPHA)	0.15 ± 0.02	0.21 ± 0.01	0.25 ± 0.01	0.06 ± 0.02	0.25 ± 0.01	0.24 ± 0.01	0.14 ± 0.02
Nitrogen concentration (end of the cycle; mgN/L)	20 ± 3	34 ± 3	10 ± 3	101 ± 14	14 ± 2	8 ± 1	7 ± 2

Lorini L., Di Re F., Majone M., Valentino F., High rate selection of PHA accumulating mixed cultures in sequencing batch reactors with uncoupled carbon and nitrogen feeding, *New Biotechnology*, *56* (2020) 10.1016/j.nbt.2020.01.006.

Conclusions and future perspectives

- At OLR ranging between 4.25 12.75 g COD/L d, the feast/famine regime was easy established and a strong PHA-storing biomass selection was observed in line with the high storage yield
- At very high OLR (18 g COD/L d) the system was unstable and the storing capacity of the microbial community was strongly affected

- The high PHA content achieved may allow simplifying the process by skipping the traditional accumulation step
- The exploitation of nutrient deficient organic waste (paper mill and olive oil mill wastewaters, cheese whey permeate or sugar-cane molasses) may be realized including a nitrogen and phosphorus addition in the famine phase

