

23-25 JUNE 2021

How the wastes composition can influence flow sheet and management of a mechanicalbiological treatment plant

A. Lieto¹, F. Lombardi¹, G. Costa¹, I. Verginelli¹, D. Zingaretti¹

¹Laboratory of Environmental Engineering Dept. of Civil Engineering and Computer Science Engineering Via del Politecnico, 1 00133 Rome, Italy
[∞] +39 06.72.59.7023
^① lombardi@uniroma2.it
^① http://ingamb.uniroma2.it/

Topics

This work aims to show how the needs of a mechanicalbiological treatment (MBT) plant could change over the years of operation, by considering the different composition of the wastes collected and treated.

It also exposed how it is possible to revert from these changing by adapting the plant setup to restore the biological stabilization efficiency.

Introduction

The EU Landfill Directive (1999/31/EC) required member states to change their approach about bio-waste management, with the aim of reducing the amount of waste sent to landfill and to attenuate impacts connected with their disposal.

In order to be used as recovery material inside landfills and to contribute to the reduction of the quantities of organic matter allowed in landfills, aerobic bio-stabilised organic waste are required to comply with the limit (1000 mgO₂/kgVS·h) established for the dynamic respirometric index .

In the next slide operating data about a MBT plant located in Rome are investigated, analyzing the input waste, the treatment of the organic fraction and the operated process to obtain the stabilized output

Materials and method – MBT plant

The composition of the residual mixed waste fed in the plant, was evaluated on 3 samples, in accordance with the APAT method.

The biological stability degree was analyzed by determining the potential dynamic respiration index (DRI), which provides information about the absolute maximum rate of oxygen consumption due to microbial activity (according to the procedure reported in the Italian Standard UNI/TS 11184-Method A - 2016).

According to UNI/TS 11184, VS content was determined measuring the loss-on-ignition after 6 h at 550 °C.

Composition of the overflow and under flow at 65

size distribution of the MSW treated at the MBT plant

year 2019

Components

													Unit 2																								
	Air f	Temperature biogas (°C)						Fan depression (mm H ₂ O)						Air flowrate (m ³ /h)				Temperature biogas (°C)						Fan c	tepro	ession	(mn	n H ₂ C	2)								
[mean]			[mean]							(me	ean]						. •	mean]						(mea	in]						[mean]						
	A	B C	D		A	В		C	D		A		В		С		D		•	E	8	С	D		•		В		С	D	_	•		В	C		D
1		3970		1			61			1			•	-172	2			1			325	7		1				67			1			-23	38		
2		4784		2			62			2	2 -168				2			386	8		2			•	67			2 -19			.90						
3		4479		3			57			3		-175			3			254	5		3			Ş	56			3	3 -18			82	2				
4		4784		4			65			4				167	7			4			356	3		4			e	62			4			-18	84		
		-																					(0 m)														
	Stabiliz in	g Temperature (rg		Stabil	izing	Umic	iity (%	<u>)</u>	_) I NC	(mgO	¹ 2/k	gV\$ h	ļ			Stabili	zing T	empe	rature	e(°C)		Sta	biliz i	ngU	midi	ty (%)		_	DRI (mgO2/kgVS h)					
		nax/mean/min]		+ -	п	nax/m	ean/m	nin]	_	_		_	ime -	eanj			_		-	max	mean/	min	-	-	-	ma	x/mea	an/mir	n		_	_	-	mean	-		
	A	B C	D	1	<u> </u>	B 7 0/3	2/1 1	C /21 1	0	1	-		В		С		D	1	•	E	3 A / C 7	с /ст	0	1	•	24	B 6/20	22/	<u>c </u> /วา 1	0	1	A		В	C		
-		70/69/00		7	<u>57,0/54,1/52,1</u>			,0/34,1/32,1			3/,U/34,1/32,1			-					-		<u>64/62/62</u>			2	34,0/33,3/32,1 34,4/33,4/30,6			-									
3 61/60/67			2	40,9/30,0/32,9			-		-	3.666			56			3		70/69/69			2	37 //34 3/21 2			2		4.184										
3 01/39/3/		³ 50,0/34,1/50,0			- 3	-							/	/0/06/06		3	<u> </u>		3																		
											1A					1B						1C					1	n									
									2A					2	в			2C				2D				11											
								3	BA					3B	\$			3C				3D)														
ol j	para	ameters	s in				44	4				4E	3			4	с			4	4D																

detected control parameters in the two reactors found in 2019

OUTPUT

Aerobic stabilization process in two reactors (unit 1 and unit 2) operating in series

INPUT

OUTPUT

unit 1

> 25 mm

Stabilization Scraps

INPUT

SCREEN (25 mm)

< 25 mm

unit 2

TOTAL OUTPUT

Main operating parameters of the two reactors at different operating modality

		Reactors in parallel	Reactors in parallel	Reactors in series							
		2019	2019	Reactors in series							
		Detected values	Simulated and optimized values	Simulated	d and optimize	ed values					
		Mean value Unit 1 and 2	Mean value Unit 1 and 2	Total	Unit 1	Unit 2					
Air flowrate											
stoichiometric amount (S)	Nm³/d	523.016	523.016	612.178	282.506	329.672					
total amount (T)	Nm³/d	750.000	2.634.339	3.076.261	1.425.338	1.650.923					
T/S	_	1,4	5	5,0	5,0	5,0					
Biodegradable fraction	%	55,00	55 ,00	55,00	55,00	42,00					
Mean Temperature in the reactors	°c	65,00	70,00	-	63,50	73,25					
Mean water content in the reactors	%	34	39	-	38,25	39,25					
AB-SOW											
% refered to MSW	%	27	17,0	15,0	27,0	15,0					
Biostabilized scraps											
% refered to MSW	%	13	13,0	13,0	13,0	~					
Losses											
% refered to MSW	%	15	25,0	27,0	15,0	27,0					
Detention time	d	18	19	30	9	21					

Detected control parameters in the reactors in series (2020)

		Reactors in series							
		D	etected value	'S					
		Total	Unit 1	Uniit 2					
Air flowrate									
stoichiometric amount (S)	Nm ³ /d	612.178	282.506	329.672					
total amount (T)	Nm ³ /d	1.077.360	642.504	434.856					
T/S	-	1,8	2,3	1,3					
Biodegradable fraction	%	40	40,00	27,00					
Mean Temperature in the reactors	°c	-	70,75	72,00					
Mean water content in the reactors	%	-	37,10	37,70					
AB-SOW									
% refered to MSW	%	16,0	-	16,0					
Biostabilized scraps									
% refered to MSW	%	13,0	13,0	-					
Losses									
% refered to MSW	%	11,0	-	11,0					
Detention time	d	32	12	20					

			Unit 1	Unit 2													
	Air flowrate (m ³ /h)		Temperature biogas (°C)		Fan depression (mm H_2O)		Air flowrate (m ³ /h)		Temperature	e biogas (°	Fan depression (m			n (mm l	1 ₂ 0)		
	[m can]		[m can]		[m can]		[m can]	[m ean]					[m can]				
	A B C D	B C D A B C D			A B C D		A B C D		A B	A B C D			A	В	С	D)
1 6820			61	1	-236	1	4988	1	1 57			1	1 -190				
2	6413	64	2	-252	2	4072	2	53			2	· -189					
3	6616	3	59	3	-264	3	4886	3	58			3	3 -207				
4	4 6922		4 57		-246	4	4173	4	29			4	-215				
								-									
	Stabilizing Temperature (°C)		Stabilizing Umidity (%)		DRI (mgO2/kgVS h)		Stabilizing Temperature (°C)	Stabilizing Umidity (%)					DRI (mgO ₂ /kgVS h)				
	[max/m ean/min]		[max/m can/min]		[m can]		[max/mean/min]	[max/m can/min]					[m can]				
	A B C D		A B C D		A B C D		A B C D		A B	С	D		A	В	С	D	,
1	<mark>70/69/68</mark>	68 1 47,0/42,8/40,1				1	<mark>76/75/72</mark>	1	38,2/ 3	87,8/ <mark>37</mark> ,5	5	1					
2	<mark>74/71/69</mark>	2	<mark>46,1/40,1/30</mark> ,1	2	nat detected	2	² 79/74/70		44,1/41,3/39,0			2	001				
3	<mark>80/7</mark> 1/63	3	42,4/34,1/28,0	3			75/74/72		45,0/40,2/35,1					3	UT .		
	4 74/72/70		4 37,4/31,5/25,2 4					4 32,6/31,4/30,3					-]				

Conclusion

By comparing the operating conditions in the years 2009 and 2019, it was observed:

- a reduction in the potentially biodegradable fractions (from 29% to 11%) composing the fed wastes
- an increasing in the paper and similar fractions (from 31% to 35%);
- an increasing in plastics fractions (from 22% to 40%).

Thus, different solutions were evaluated to better separate plastics and scraps from the flows that is aerobically treated in the basins.

Main changes:

- screening of the wastes;
- basins configuration, operating with reactors in series and using a screening unit (25 mm) before transferring the stabilizing material from unit 1 to unit 2.

These changes simplified the management of both drying and stabilization steps, as evidenced by final DRI values.

The validity of these change was also confirmed once the changes were implemented and the consequent surveys carried out.

23-25 JUNE 2021

How the wastes composition can influence flow sheet and management of a mechanicalbiological treatment plant

A. Lieto¹, F. Lombardi¹, G. Costa¹, I. Verginelli¹, D. Zingaretti¹

¹Laboratory of Environmental Engineering Dept. of Civil Engineering and Computer Science Engineering Via del Politecnico, 1 00133 Rome, Italy
[∞] +39 06.72.59.7023
^① lombardi@uniroma2.it
^① http://ingamb.uniroma2.it/

TOR VERGAT

UNIVERSITY OF ROME