

Politechnika Wrocławska

Preparation of hydrogel capsules as macro and microelements carriers

K. Mikula, G. Izydorczyk, D. Skrzypczak, K. Chojnacka, A. Witek-Krowiak

Department of Advanced Material Technology, Wroclaw University of Science and Technology, Poland

PLANT NUTRITIONAL REQUIREMENTS

Chlorophyll component, nitrogen assimilation, Concentration in the plant: 2 - 50 mg/kgDeficiency: bleaching of leaves and ears, slower ripening

> Gene expression regulator, influences the catalytic abilities of enzymes, participates in creating protein structures and optimizes carbohydrate metabolism. **Concentration in the plant:** 15 - 20 mg/kg **Deficiency:** centipede chlorosis on leaves, shortened shoots

It takes part in the process of photosynthesis, a component of proteins and enzymes,
maintaining the proper structure of chloroplasts
Concentration in the plant: 10 - 100 mg/kg.
Deficiency: chlorosis, yellowing of the plates

INNOVATIVE HYDROGEL STRUCTURES WITH IMMOBILIZED BIOMASS

OPTIMIZATION OF THE COMPOSITION OF THE HYDROGEL MATRIX

THE CONCENTRATION OF INGREDIENTS

Fig. 1. Preparation of hydrogel capsules: with an optimal concentration of sodium alginate (2% m / m) (A) and a high concentration of sodium alginate (over 5% m / m) (B)

OPTIMIZATION OF THE COMPOSITION OF THE HYDROGEL MATRIX

No.	Capsule type	Alginate	CMC	Starch
		% m/m	% m/m	% m/m
1.	ALG	2.0	-	-
2.	ALG/CMC	2.0	1.0	-
3.	ALG/CMC/STARCH	1.3	0.5	6.5

REDUCTION OF PRODUCTION COSTS

Fig 2. 3D charts of interaction on the sorption capacity of capsules of two independent variables: (A) concentration of CMC and concentration of ALG, (B) concentration of starch and Concentration

OPTIMIZATION OF THE COMPOSITION OF THE HYDROGELS

Fig 3. 3D charts of interaction on the sorption capacity of capsules of two independent variables: (A) concentration of CMC and concentration of ALG, (B) concentration of ES and concentration of ALG, (C) concentration of ES and concentration of CMC, obtained based on Box-Behnken Design

PREPARED HYDROGEL CARRIERS

 $Q_{max} = 4,79 \text{ mg/g} \qquad Q_{max} = 7,55 \text{ mg/g} \qquad Q_{max} = 18,35 \text{ mg/g} \qquad Q_{max} = 23,50 \text{ mg/g} \qquad Q_{max} = 19,40 \text{ mg/g} \qquad Q_{max} = 8,46 \text{ mg/g} \qquad Q_{max} = 7,54 \text{ mg/g} \qquad Q_{max} = 8,98 \text{ mg/g} \qquad Q_{max} = 10,40 \text{ mg/g}$

CHITOSAN COATINGS

Fig. 4. Composite after sorption without coating (A), with 1% chitosan coating (B), with 2.5% chitosan coating (C)

CHITOSAN COATINGS \longrightarrow Slower release of Cu²⁺ ions

FUTURE PERSPECTIVE: HYDROGEL CARRIERS OF MACRO AND MICROELEMENTS

Politechnika Wrocławska

THANK YOU FOR YOUR ATTENTION

Katarzyna Mikula