

Valorisation of fruit wastes for the production of poly(3-hydroxybutyrate) and value-added co-products

Olga Psaki, Dimitrios Ladakis, Maria Alexandri and Apostolis Koutinas

Department of Food Science and Human Nutrition Agricultural University of Athens

Email: <u>olgapsaki@outlook.com</u>

Objectives

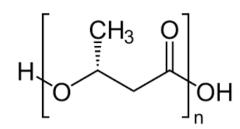
Introduction

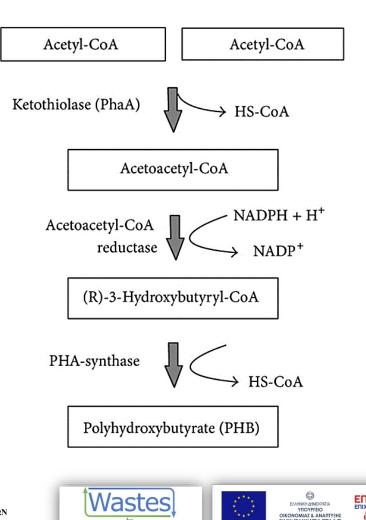
- ✓ Poly(3-hydroxybutyrate) (P3HB) structure and synthesis
- ✓ P(3HB) applications
- ✓ Food wastes in Europe

Characterization and pretreatment of raw materials

- ✓ Chemical composition
- Extraction and determination of free sugars
- ✓ Extraction and Determination of Total phenolic content with the method Folin-Ciocalteu
- ✓ Extraction of pectin and determination of galacturonic acid

P(3HB) production by *Burkholderia sacchari*


- ✓ Evaluation of nitrogen source in shake flasks fermentations
- ✓ Fed-batch fermentation in bioreactor with phosphorous limitation strategy
- Conclusions

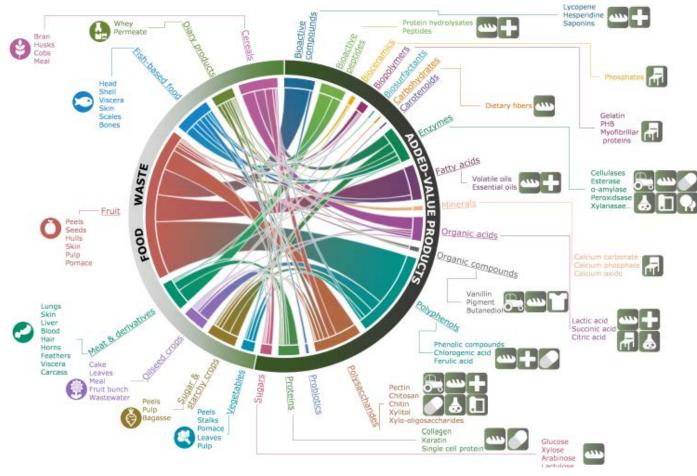


Poly(3-hydroxybutyrate) (P3HB) structure and synthesis

- Member of polyhydroxyalkanoates, polymer of polyesters
- Accumulated in intracellular granules by Gram + and – microorganisms
- Poly-beta-hydroxybutyrate (PHB), the polymeric ester of four D(-)-3 hydroxybutyrate
- In an excess of carbon source and a nutritional limitation factor (N, P, O)

Biopolymers

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης


P(3HB) applications

Food wastes in Europe

- It is estimated that around 129 million tonnes of food are wasted annually in EU
- Fresh fruit and vegetables contribute to almost 45% of the food waste generated
- EU households generate 35.3 kg of fresh fruit and vegetable waste per person per

year

KONOMIAE & ANAITT

FPAMMATEIA ETITA &

Chemical composition

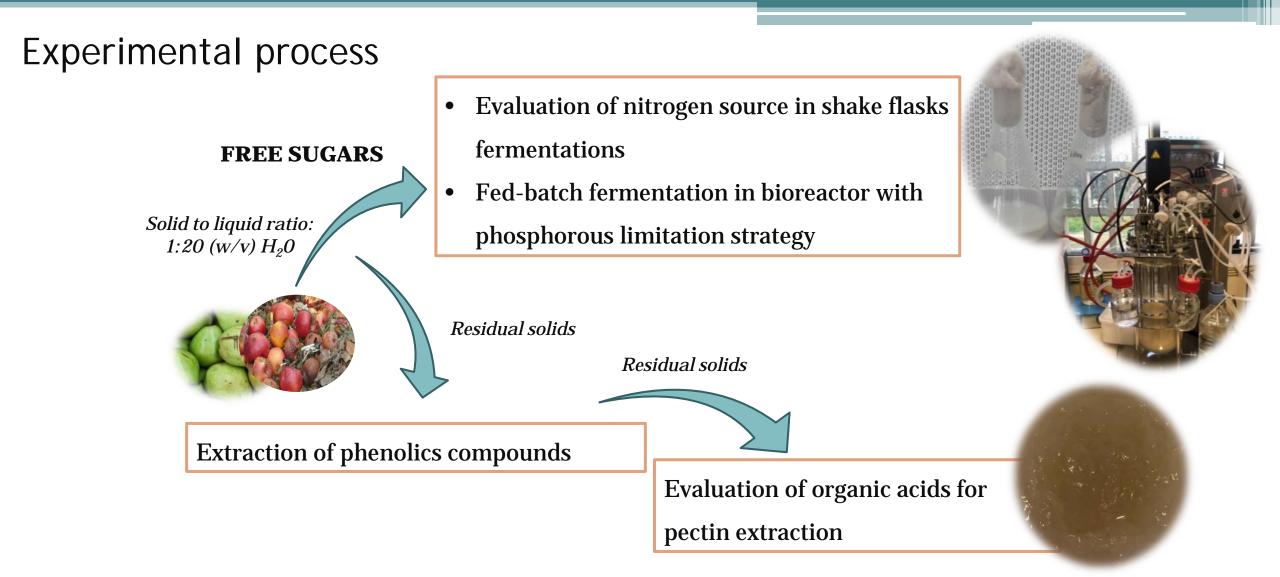
	0	APPLE		PEAR		РЕАСН		
	Composition (% Dry basis)	Present Study	Literature	Present Study	Literature	Present Study	Literature	
	Moisture content (%)	84.4	81.0-86.6	83.5	81.0-85.0	87.2	84.7-87	
	Protein content	2.6	1.6-3.7	3.2	1.3-3.8	3.5	4.20	
	Free sugars	71.7	44.7-65.0	75	42.0-75	72.1	46.9-76.5	
	Lipid content	0.8	1.3±0.1	0.3	1.3-3.8	0.3	0.2-0.7	
	Ash content	2.7	2.2±0.7	2.4	0.2-5.5	4.1	2.6-3.1	
(Total Phenolics content (g GAE/100g Dry weight)	0.9	0.2-0.13	0.6	0.25-0.85	0.47	0.2-0.4	
	Pectin content	10	7.8-13.2	8.4	3.1-14.2	8.9	2-10	
***	Cellulose	5.3	3.4-8.81	4	4.6-7.9	3.9	1.33-3.58	•
	Lignin	1.2	0.6-2.98	2.8	1.3-2.7	2.5	0.73-4.13	
	Hemicellulose	4.8	0.6-5.44	3.3	2.5-3.0	4.1	1.6-3.9	

✓ Rich in pectins

 $\checkmark\,$ Contains high amounts

of free sugars

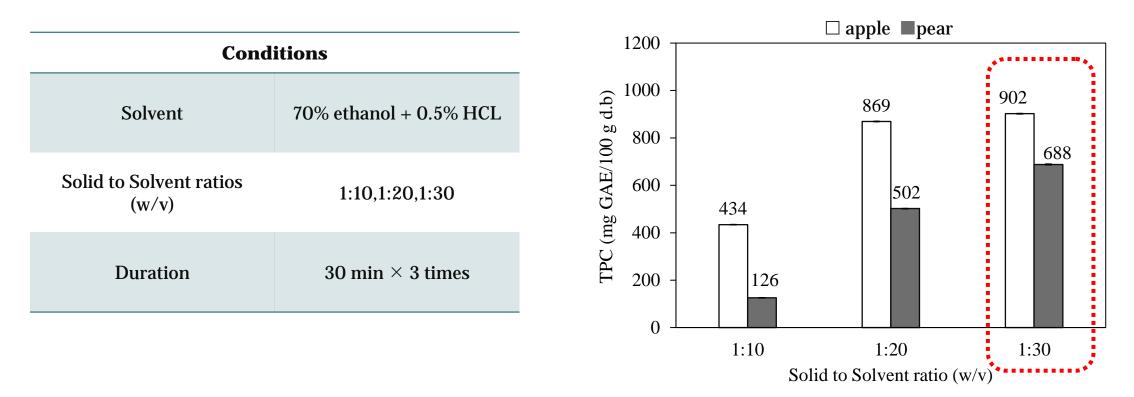
✓ Main sugars: Glucose,


Fructose, Sucrose



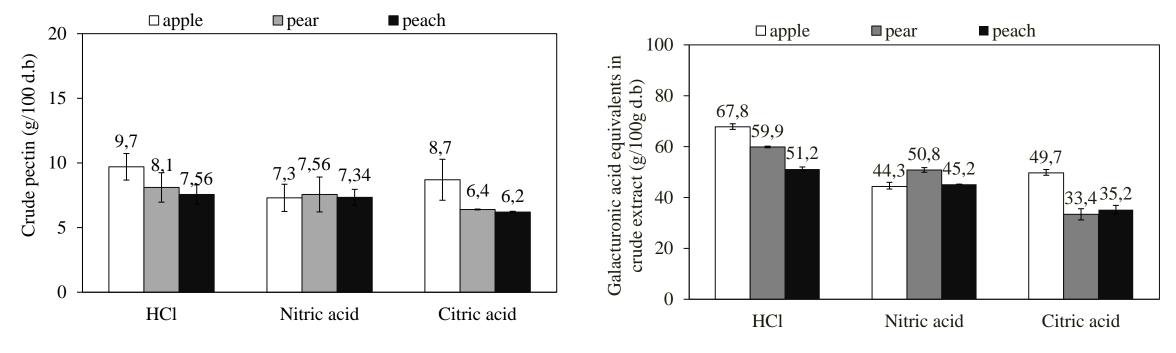
Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Extraction of free-water soluble sugars



Solid to solvent ratio(w/v)

Extraction of total phenolic content



- High total phenolic content in apple (~902 mg GAE/ 100 g dw)
- Better total phenolic content extraction in solid to solvent ratio 1:30

Extraction of pectins

	Conditions
HCl	pH:2 ,75 ⁰ C, 60 min, solid to solvent ratio 1:25 (w/v)
Citric acid	pH 2, 87°C, 160 min, solid to solvent ratio 1:25 (w/v)
Nitric acid	pH:2 ,80°C, 70 min, solid to solvent 1:25 (w/v)

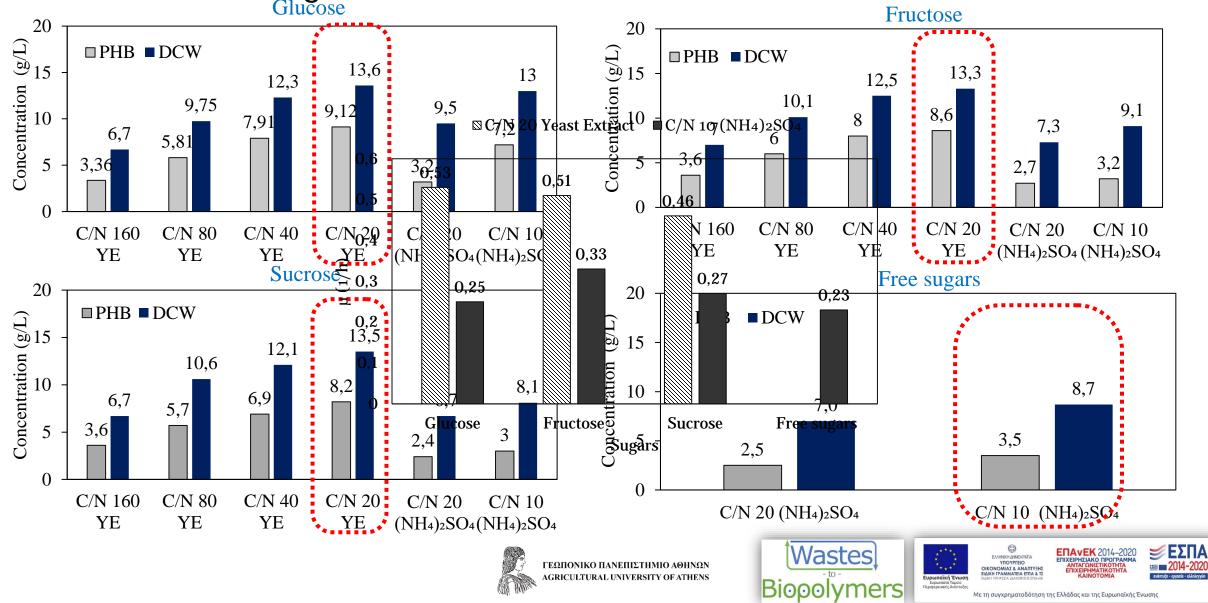
 Highest pectin yield was obtained in apple and pear substrates using HCl

Evaluation of nitrogen source in shake flasks fermentations

•	Carbon source : Glucose, Fructose, Sucrose,
	Free sugars

- Microorganism : *Burkolderia sacchari* DMSZ 17165
- Fermentations were carried out at four carbon/ nitrogen ratios (C/N:160, 80, 40,20) in organic nitrogen source (yeast extract) and two carbon/ nitrogen ratios (C/N: 20:1, 10:1) in inorganic nitrogen source ((NH₄)₂SO₄)

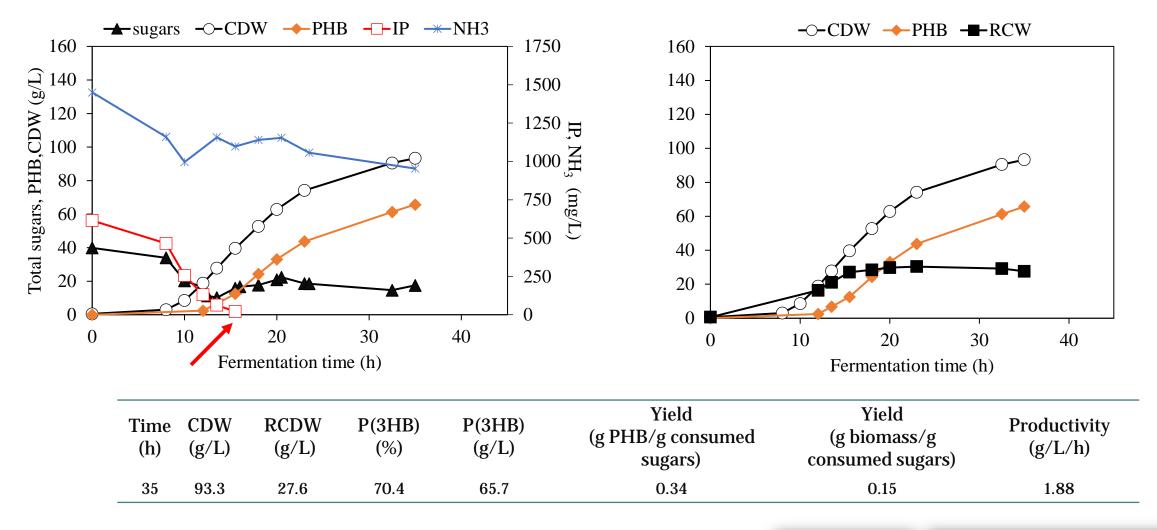
	Organic Nitrogen Source	Inorganic Nitrogen Source
Carbon source (g/L)	40	40
Yeast extract (g/L)	1, 2.5, 6.15, 15.0	1
$(NH_4)_2 SO_4 (g/L)$	1	2-4
$Na_2HPO_4 \cdot 2H_2O (g/L)$	4.5	4.5
$\mathrm{KH}_{2}\mathrm{PO}_{4}~\mathrm{(g/L)}$	1.5	1.5
$MgSO_4 \cdot 7H_2O (g/L)$	0.2	0.2
Trace element (mL/L)	1	1


Batch fermentations in shake flasks

Trace element: solution (per L): $FeSO_4$. $7H_2O$, 10 g; $ZnSO_4$. $7H_2O$, 2.25 g; $CuSO_4$. $5H_2O$, 1 g; $MnSO_4$. $4-5H_2O$, 0.5 g; $CaC1_2$. $2H_2O$, 2 g; $Na_2B_4O_7$.10H₂O, 0.23 g; $(NH_4)_6Mo_7O_{24}$. 0.1 g; 35% HC1 10 mL.

Evaluation of nitrogen source in shake flasks fermentations

Fed batch fermentation with phosphorous limitation


Fed Batch Fermentation				
Carbon Source	Free Sugars 40 g/L			
Working volume	1 L			
рН	6.8 (28% NH ₄ OH кал 2M HCl)			
Temperature	30			
Agitation	Cascade 400-1200 rpm, DO: 20 %			
Aeration	2.5 vvm			
Composition (g/L)	$\begin{array}{l} ({\rm NH}_4)_2{\rm SO}_4, 4.0 \ g; \ {\rm KH}_2{\rm PO}_4, 3.0 \ g; \ citric \ acid, 1.7 \ g; \\ {\rm EDTA}, \ 40 \ mg; \ trace \ elements \ solution, \ 10 \ mL; \\ {\rm MgSO}_4 \cdot 7{\rm H}_2{\rm O}, \ 1.2 \ g. \\ {\rm Trace \ element} \ ({\rm g/L}): \ {\rm FeSO}_4 \cdot 7{\rm H}_2{\rm O}, \ 10 \ g; \ {\rm ZnSO}_4 \cdot 7{\rm H}_2{\rm O}, \\ 2.25 \ g; \ {\rm CuSO}_4 \cdot 5{\rm H}_2{\rm O}, \ 1 \ g; \ {\rm MnSO}_4 \cdot 4{\rm H}_2{\rm O}, \ 0.5 \ g; \ {\rm CaCl}_2 \\ \cdot 2{\rm H}_2{\rm O}, \ 2 \ g; \ {\rm Na}_2{\rm B}_4{\rm O}_7 \cdot 10{\rm H}_2{\rm O}, \ 0.23 \ g; \ ({\rm NH}_4)_6{\rm Mo}_7{\rm O}_{24}, \ 0.1 \ g; \\ 35\% \ {\rm HCl} \ 10 \ {\rm mL} \end{array}$			

Fed batch fermentation with phosphorous limitation strategy

Conclusions

- The recovery of value-added components from Fruits wastes could increase the profitability of fruit wastes-based biorefinery development
- Batch fermentations: Ammonium sulphate as inorganic nitrogen source can be utilized as nitrogen source
- Fed batch fermentation: Free sugars from fruit wastes was efficiently valorized as carbon source for P(3HB) production

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ AGRICULTURAL UNIVERSITY OF ATHENS

Thank you for your attention!

"Bioconversion of Food Industry Wastes to Biopolymers for Packaging Applications in a Biorefinery Concept - Wastes-to-Biopolymers"

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (Project name: Bioconversion of Food Industry Wastes to Biopolymers for Packaging Applications in a Biorefinery Concept - Wastes-to-Biopolymers; project code: T1EDK-02822).