Evaluation of diversified bioprocessing schemes for biosurfactants production from *Lactobacillus* strains using cheese whey

V. Kachrimanidou
Department of Food Science and Technology, Ionian University

Presenting author email: vkachrimanidou@gmail.com,
*Corresponding author email: kopsahelis@ionio.gr
Biosurfactants or microbial surfactants constitute a group of amphiphilic molecules, comprising of both a hydrophobic (e.g. long-chain fatty acid, hydroxyl fatty acid) and a hydrophilic moiety (e.g. carbohydrate, amino acid, peptides, phosphate, alcohol).
Microbial surfactants

- Biodegradable-Environmentally benign
- Surface active properties
- Moderate to low toxicity
- Numerous applications

Biosurfactants

Biosurfactant production

Bacteria, yeast and fungi

Bioremediation-
Environment

- Soil washing
- Pharmaceuticals
- Food industry
- Cosmetic formulations
- Agriculture

However...

Industrial production is hindered

- High cost of production-cost of raw materials
- Pathogenic strains-restrict food applications
- Characterisation of the produced structures
- Low productivities
- Downstream separation
Biosurfactants

- Surface activity properties
- Effective Critical micelle concentration
- Stability to several factors: pH, temperature, salt concentrations

Significant characteristics specifically for the food industry

Potential applications the food industry

- Antimicrobial agents
- Biofilm formation inhibition
- Emulsifying agents
- Antioxidant properties
- Novel food formulations

Could replace the chemically derived counterparts
Biosurfactants market

In 2018, the global biosurfactants market was > $1.5 billion

Global market size and growth forecast by product type

Market share and forecast by applications

Misailidis, N., Petrides, D. Intelligen, Inc.

Biosurfactants

Cost competitive BS production

✗ High cost of production-cost of raw materials

億 Utilisation of renewable resources
(e.g. agro-industrial waste and by-product streams)

- Molasses
- Waste frying oil
- Glycerol
- Winery by-products
- Lignocellulosic biomass
- Cheese whey

Annual Operating Cost Breakdown of a plant producing rhamnolipids via fermentation with *Pseudomonas* strain

Misailidis, N., Petrides, D. Intelligen, Inc.
Biosurfactants

Cost competitive BS production

✗ Pathogenic strains-restrict food applications

≤ Identification of novel GRAS strains (e.g. lactobacilli strains)

≤ Isolation of strains found in the microbiota of fermented foods
 (e.g. dairy industry)

☐ Establishing novel end product formulations with increased added value will
 mediate the sustainability of BS production

☐ Integration in biorefinery concepts within the concept of circular bio-economy
Twofold approach of this study:

A. Identification of potential biosurfactant producers selected from lactobacilli isolated from several sources

- Four different culture collections were employed

Screening for BS producers

- Ten (10) strains were selected after the screening

Evaluation of bioprocessing strategies

- Microtiter fermentations
- Shake flasks
- Bioreactor studies
Renewable resources for BS production

B. Implementation of cheese whey as a low-cost fermentation feedstock

Cheese whey: by-product stream of the dairy industry

Mainly water, but also:
- lactose (66–77%, \text{w/w})
- protein (8–15%, \text{w/w})
- minerals salts (7–15%, \text{w/w})

\(\sim 9 \text{ L of whey are obtained for every } 1 \text{ kg of cheese produced} \)

Cheese whey-integrated biorefining approaches within circular economy

Lappa et al., Foods 2019, 8, 347.
Experimental design for BS production

LAB culture on commercial medium and cheese whey→ Biosurfactant evaluation

- Surface tension measurements
- Blood agar test- Haemolytic activity
- Oil displacement test
- Emulsification index (E_{24}, E_{48})
- Lactose consumption

LAB BS production→ Extracellular or cell-bound

Supernatant and PBS-extracts were tested→ Selection of potential BS producers

Several methods for screening of LAB strains
Experimental design for BS production

- Selection of potential BS producers

A. Shake flask fermentations

B. Microplate experiments

C. Bioreactor fermentations

Effect of pH and incubation temperature (°C)

Effect of selected nitrogen sources and micronutrients (μ, h^{-1})

Controlled pH and temperature
Shake flask fermentations

- Cheese whey was the sole fermentation substrate
- Initial lactose: ~20 g/L, pH: 4, 5, 6.8 and T: 25, 30, 37 and 40 °C

Lactose consumption was significantly low and fermentation was prolonged

$E_{24}(\%)$ was higher at pH 5 and pH 6.8 and T:37 and 40 °C

pH 4 and T:25 °C did not sustain microbial growth

Low Lactic Acid (LA) and Total Dry Weight (TDW, gL⁻¹) production
<table>
<thead>
<tr>
<th>Strain</th>
<th>T<sub>f</sub> (h)</th>
<th>Lactose (g/L)</th>
<th>Lactic acid (g/L)</th>
<th>TDW (g/L)</th>
<th>E<sub>24</sub> PBS extracts (%)</th>
<th>E<sub>24</sub> supernatants (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACA 182</td>
<td>119</td>
<td>15.84</td>
<td>2.54</td>
<td>9.38</td>
<td>19.23</td>
<td></td>
</tr>
<tr>
<td>ACA 276</td>
<td>70</td>
<td>14.65</td>
<td>4.53</td>
<td>0.30</td>
<td>9.38</td>
<td>21.74</td>
</tr>
<tr>
<td>ACA 731</td>
<td></td>
<td>2.21</td>
<td>4.69</td>
<td>0.55</td>
<td>9.38</td>
<td>15.38</td>
</tr>
<tr>
<td>ACA 4052</td>
<td>95</td>
<td>11.73</td>
<td>3.07</td>
<td>0.30</td>
<td>12.50</td>
<td>19.23</td>
</tr>
<tr>
<td>CECT 278</td>
<td>95</td>
<td>17.22</td>
<td>7.56</td>
<td>4.60</td>
<td>9.38</td>
<td>23.08</td>
</tr>
<tr>
<td>CECT 4023</td>
<td>119</td>
<td>2.15</td>
<td>1.60</td>
<td>0.60</td>
<td>17.39</td>
<td>30.43</td>
</tr>
<tr>
<td>LQC 752</td>
<td>95</td>
<td>10.12</td>
<td>2.16</td>
<td>0.25</td>
<td>9.09</td>
<td>13.04</td>
</tr>
<tr>
<td>LQC 753</td>
<td>95</td>
<td>10.40</td>
<td>1.80</td>
<td>6.95</td>
<td>9.00</td>
<td>66.67</td>
</tr>
<tr>
<td>LQC 854</td>
<td>95</td>
<td>15.78</td>
<td>0.00</td>
<td>4.05</td>
<td>10.87</td>
<td>39.13</td>
</tr>
<tr>
<td>FMCC E108</td>
<td>46</td>
<td>10.15</td>
<td>2.05</td>
<td>0.10</td>
<td>9.09</td>
<td>48.00</td>
</tr>
<tr>
<td>pH 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACA 182</td>
<td>119</td>
<td>6.04</td>
<td>1.79</td>
<td>11.0</td>
<td>13.04</td>
<td>21.74</td>
</tr>
<tr>
<td>ACA 276</td>
<td>119</td>
<td>15.51</td>
<td>8.22</td>
<td>0.70</td>
<td>10.87</td>
<td>39.13</td>
</tr>
<tr>
<td>ACA 731</td>
<td>119</td>
<td>15.33</td>
<td>12.81</td>
<td>1.85</td>
<td>13.04</td>
<td>30.43</td>
</tr>
<tr>
<td>CECT 278</td>
<td>70</td>
<td>14.28</td>
<td>9.00</td>
<td>2.00</td>
<td>19.05</td>
<td>26.09</td>
</tr>
<tr>
<td>CECT 4023</td>
<td>46</td>
<td>9.16</td>
<td>0.00</td>
<td>0.90</td>
<td>13.04</td>
<td>34.78</td>
</tr>
<tr>
<td>LQC 752</td>
<td>95</td>
<td>2.33</td>
<td>2.05</td>
<td>1.15</td>
<td>13.04</td>
<td>21.74</td>
</tr>
<tr>
<td>LQC 753</td>
<td>95</td>
<td>2.35</td>
<td>0.73</td>
<td>0.80</td>
<td>16.67</td>
<td>21.74</td>
</tr>
<tr>
<td>LQC 854</td>
<td>95</td>
<td>7.71</td>
<td>2.55</td>
<td>0.25</td>
<td>13.04</td>
<td>26.09</td>
</tr>
<tr>
<td>FMCC E108</td>
<td>70</td>
<td>5.85</td>
<td>2.19</td>
<td>0.50</td>
<td>18.18</td>
<td>21.74</td>
</tr>
</tbody>
</table>
Microplate experiments

- Cheese whey was supplemented with several nitrogen sources
- Yeast extract, peptone, beef extract and their combinations

The combination of yeast, peptone and beef extract indicated higher specific growth rates
Cheese whey was supplemented for further experiments

Medium D: yeast extract 4 gL⁻¹, peptone 10 gL⁻¹, beef extract 8 gL⁻¹
Medium F: yeast extract 4 gL⁻¹, 5.3 gL⁻¹ ammonium citrate, peptone 10 gL⁻¹
Microplate experiments

- Cheese whey was also supplemented with specific micronutrients: Ca, Mg, Mn, and two combinations of micronutrients.
- Initial lactose: \(\sim 20\) g/L, pH: 6.8 and T: 37 °C

![Absorbance vs. Fermentation Time](image)

- The addition of Ca improved microbial proliferation, followed by Mg
Shake flask fermentations

- Cheese whey was supplemented with yeast extract, peptone and beef extract
- Initial lactose: ~20 g/L, pH: 5, 6.8 and T: 30, 37 and 40 °C

In most cases pH 5 led to lower BS production
T:40 °C inhibited BS secretion in some strains

Bioreactor studies were performed with less strains to further study the fermentation conditions
Bioreactor fermentations

Lacticaseibacillus rhamnosus CECT 278

Significant reduction occurs the first hours
Bioreactor fermentations

Limosilactobacillus fermentum ACA DC 183

Cheese Whey with yeast extract and peptone

- **Lactose**
- **Surface Tension**
- **Lactic acid**
- **TDW**

Cheese Whey
Bioreactor fermentations

Limosilactobacillus fermentum ACA DC 183

Cheese Whey

Maximum reduction in ST occurs the first hours of fermentation when TDW increases two-fold

Crude BS increase along with biomass increase
Preliminary BS characterisation

Downstream of BS

Extraction of cell bound BS with PBS ➔ Centrifugation ➔ Dialysed with membranes ➔ Freeze Drying ➔ Crude BS extract ➔ Characterisation

Surface tension measurements

Ninhydrin

protein-based BS molecule

60-70% protein content
20% carbohydrates

Protein and Carbohydrates content
Bioreactor fermentations

Limosilactobacillus fermentum ACA DC 183

Critical Micelle Concentration (CMC)

- **CMC**: 0.08 mg/mL

Biosurfactant concentration (mg/L)

Surface Tension (mN/m)

Antimicrobial activity against fungal strains
Future studies

Evaluation of bioprocessing strategies

Target: To further increase biomass production within the first hours

- Evaluate aeration conditions (facultative anaerobic strains)
 Trigger biomass production instead of lactic acid
- Evaluate repeated fed-batch
- Stability studies and antimicrobial activity to identify potential applications
- Detailed characterisation of produced BS
- Investigate emulsion stability and surface tension for cosmetic/food formulation
Thank you for your attention

Dr Vasiliki Kachrimanidou
Department of Food Science and Technology, Ionian University
vkachrimanidou@gmail.com
kopsahelis@ionio.gr

Acknowledgments
Dimitra Alimpoumpa
Dr Aikaterini Papadaki
Dr Iliada Lappa