

Application of Ozonation and Bioremediation for Integrated Treatment and Valorization of Drilling Waste: Technology Development and Monitoring of Microbial Dynamics

<u>M. Koutinas¹</u>, I. Vyrides¹, K. Andreou¹, G. Kazamias², M. Chatzicharalampous², C. Varavvas²

¹ Cyprus University of Technology, Limassol, Cyprus

² IESC Innovating Environmental Solutions Center Ltd., Limassol, Cyprus

Drilling Waste: Need for Environmental Friendly Methods

- Drilling waste: 25×10⁶ m³ y⁻¹
- O&G wastewater discharges: 14.5×10⁹ m³ y⁻¹
- Drilling fluid: 11000-19000 m³ per drill hole
- Toxic & persistent pollutants (TPH, PAH)

Biodegradation & Valorisation of Drilling Waste

Drilling WasteWater Biodegradation

ENTERPRISES/0916/0160

- Hydrocarbon contaminated hypersaline wastewater
- 0.5-200 g L⁻¹ NaCl, 1% (v/v) DF, 60 h incubation
- 79-93% COD removal for 0.5-30 g L⁻¹ NaCl

4 5

NaCl [g L-1]

10 20 30 50 100 200

3 g L⁻¹ NaCl: 177 mg L⁻¹ *n*-dodecane, 79 mg L⁻¹ *n*-tetradecane & 333 mg L⁻¹ naphthalene biodegradation

Oily Mud Biodegradation

28 °C, pH 7, 3 g L⁻¹ NaCl, 96 h incubation

COD [mg L⁻¹]

- 71% COD removal using 1% (w/v) oily mud
- 51% COD removal using 50% (w/v) oily mud

14-15 mg L⁻¹ n-dodecane, 3-7 mg L⁻¹ n-tetradecane & 29-37 mg L⁻¹ naphthalene biodegradation

Cyprus

University of Technology

 10% and 50% (w/v) oily mud is difficult to treat and requires optimisation

Experimental conditions	Methyl decanoate	Methyl myristate	
	(% of DCW)	(% of DCW)	
30 °C, pH 7, 0.5 g L ⁻¹ NaCl	17.9	6.1	
30 °C, pH 7, 1 g L ⁻¹ NaCl	13.9	3.9	
30 °C, pH 7, 2 g L ⁻¹ NaCl	11.9	2.8	
30 °C, pH 7, 3 g L ⁻¹ NaCl	11.8	4.1	
30 °C, pH 7, 4 g L ⁻¹ NaCl	5.6	5.2	
30 °C, pH 7, 5 g L ⁻¹ NaCl	5.3	4.9	
30 °C, pH 7, 10 g L ⁻¹ NaCl	4.2	3.9	
30 °C, pH 7, 20 g L ⁻¹ NaCl	5.0	4.6	
28 °C, pH 7, 3 g L ⁻¹ NaCl	12.8	7.4	
37 °C, pH 7, 3 g L ⁻¹ NaCl	8.0	4.3	
28 °C, pH 6, 3 g L ⁻¹ NaCl	7.1	2.8	

Medium-chain-length PHA

- 1% DF at different conditions
- **24% of DCW**
- Low salinity levels
- SJTE-3 converts DF into similar quantities of the promising biodegradable thermoelastomer to other studies without additional strategy for hydrocarbons solubilisation (e.g. surfactants, solvent)

Biosurfactant

- 53% water surface tension reduction
- 43.3% emulsification index (E24)

Expression from Biosynthetic & Biodegradation Routes

- Transcription of *Pseudomonas* spp metabolic pathways monitored at different time points during biodegradation of 1% (v/v) DF
- *phaG* gene, putatively involved in the biosynthesis of **medium-chain-length PHA**

• arfB, amsY, psoA and rhIB genes associated to arthrofactin, amphisin, putisolvin and rhamnolipid

• **ndoB** gene encodes for naphthalene dioxygenase driving **naphthalene** biodegradation

• *alkB* gene constitutes universal marker for **oil biodegradation**

Expression from Biosynthetic & Biodegradation Routes

- arfB and amsY were not expressed
- *psoA* transcription remained at high levels
- *P. citronellolis* could potentially produce **putisolvin**

8

Hybrid Ozone-Bioprocess for Drill Cuttings Valorisation

FOUNDATION

Ozonation & Bioremediation as Single Drill Cuttings Treatments

- Untreated DC: pH 8.5 and 40% (w/w) moisture
- 150 Kg DC
- Faster kinetics in pH 12.5 (47.3% removal)
- 44.2% removal in pH 11.5
- Additional moisture inhibited the process

	Oil Concentration [% w/w]			
	7 d	110 d	150 Kg	
Control (Composting only)	2.27	0.35	+	
Ozonation + Composting	1.65	0.36		
Ozonation + Composting + Biostimulation	1.74	0.27	250 Kg Prunings	
Ozonation + Composting + Biostimulation + Bioaugmentation	1.79	0.21	+	
Ozonation + Composting + Biostimulation + Bioaugmentation + Biochar	1.97	0.23	50 Kg Activated Slu	

Cyprus

University of Technology

Hybrid Ozone-Bioremediation for Drill Cuttings Valorisation

- Ozonation vs no ozonation
- 33% DC + 55% Prunings +12 AS
- **55% DC** + 44% Prunings +12 AS
- Ozonation + 33% DC fastest kinetics
- 0.3-0.6% oil following 21 d

ENTERPRISES/0916/0160

- 33% DC without ozonation: 0.6% oil at **70 d**
- 55% DC: reduced performance with ozonation
- Ozonation + 55% DC failed to reach 0.5% of oil
- 55% DC bioremediation performed 0.5% oil at **70 d**
- Increase of AS reduced performance of both systems

Microbial Dynamics and Use of Compost as End Product

Treatment

12

Cyprus

University of Technology

	Thermal - TCC	Hybrid Ozone-Bioprocess	Bioprocess Only
	(€)	(€)	(€)
SALES	2,280,960	2,160,000	1,296,000
COST OF SALES			
Raw materials	703,296	1,312,000	491,520
Labour	265,200	89,700	119,600
Manufacturing overhead	1,258,790	740,000	1,122,702
	2,227,286	2,141,700	1,733,822
Net annual (loss)/profit	53,674	18,300	(437,822)

- **47,520** t_{DC} yr⁻¹, 10% oil and moisture, 24 h d⁻¹ for 330 d
- Thermal desorption (Thermomechanical Cuttings Cleaner TCC)
- 21 d of Ozone + Biotreatment (33% DC+55% Prunings+12% AS)
- 70 d Biotreatment Only (55% DC+33% Prunings+12% AS)

- TCC and hybrid treatments **exhibit profit**
- Biotreatment only: prolonged process duration
- Hybrid process: prunings transportation was a key cost parameter

- Holistic approach for sustainable drilling waste treatment
- *P. citronellolis* SJTE-3 enabled enhanced removal of **TPH** and **PAH** from DF
- In situ production of bioplastics and biosurfactants
- Activation of **putisolvin** biosynthetic pathway
- 47.3% oil removal via ozonation
- Similar microbial community composition in all treatments
- Hybrid ozonation-bioremediation is cost-competitive

Thank you!

PhD Students

(RPP

Kyriakou M.

IESC

Funding

ENTERPRISES/0916/0160 (OzoneBioPro)

Organisers of THESSALONIKI2021

