

REMOVAL OF PESTICIDES FROM WASTEWATER BY MEMBRANE PROCESS

Nuray Ates¹, Nigmet Uzal², Ulku Yetis³, Filiz B. Dilek³

¹Erciyes University, Dept. of Environmental Engineering, 38380, Kayseri, nuraya@erciyes.edu.tr.
²Abdullah Gül University, Dept. of Civil Engineering, 38039, Kayseri, nigmet.uzal@agu.edu.tr.
³Middle East Technical University, Dept. of Environmental Engineering, 06531, Ankara, uyetis@metu.edu.tr, fdilek@metu.edu.tr

Micropollutants

Water pollution has become a very important issue, especially in the last 20 years, since the presence of numerous and types of pollutants in ng/L and µg/L levels in aquatic environments.

Common pathways of micropollutants into water sources.

Treatment of Micropollutants

Conventional WWTPs are not designed to completely eliminate micropollutants into less harmful compounds or even to mineralize them.

Advanced water treatment processes include;

- ✓ Ion Exchange
- ✓ Adsorption (e.g., GAC),
- ✓ Advanced chemical/oxidation technologies,
- ✓ Membrane filtration
 - Complete Removal
 - Management of by-products

Management of Point and Diffuse Pollutant Sources in the Yeşilırmak River Basin

Monitoring studies were carried out in a total of 54 different stations in the Yeşilırmak Basin;

Point Sources: Industrial Facilities, WWTP, etc. Non-Point Sources: Agricultural Activities 8 pollutants were detected in at least 3 of the monitored WWTPs at least 10 times above the EQS values;

Carbendazim
Malation
Imidacloprid
Aclonifen

Flutriafol,
Tributyl phosphate
Irgarol
Dicofol

PESTICIDES

Pesticide	Molecular Structure	Specifications	MW	LogK _{ow}	K _H (atm. m³/mole)
Tributyl Phosphate		 Organophosphorus pesticide very stable in the natural environment cannot be removed in WWTP Class II, 'moderately hazardous' pesticide 	266.31	4.0	1.5*10 ⁻⁷
Flutriafol		 Fungicide Not readily biodegradable but can dissolve in soil and water over a long period of time, Toxic for aquatic organisms 	301.29	2.3	1.63*10 ⁻¹³
Dicofol		 Organochlorine pesticide Listed in POPs in Partially biodegradable and hydrolized, but persistent in acidic conditions 	370.49	5.02	2.4*10 ⁻⁷
Irgarol		 Biocide and algicide Persistent, does not decompose easily in water Undergoes photodegradation to some permanent metabolites 	253.37	3.95	3.1*10 ⁻⁸

Motivation of The Study

In the scope of the Project, the pollutants detected to exceed the EQS in at least 3 WWTPs were evaluated as important pollutants for the Yeşilırmak Basin.

	EQS (µg/L)	Min (µg/L)	Max (µg/L)	in WWTP	Exceed Times
Tributyl Fosfat	53	571	2143	5	10-40
Flutriafol	25	129	202	3	5-8
Dicofol	0.0013	1.88	3.08	2	1500-2000
Irgarol	0.0025	0.42	0.87	4	170-350

Objective of the Study

The removal of tributyl phosphate, flutriafol, dicofol and irgarol which are four different micropollutants contributing the industrial pollution were investigated by reverse osmosis (RO) process.

Materials and Methods

Three different membranes (BW30-LE, SW30-XLE and GE-AD) were selected for the removal of pesticides and removal tests were carried out at two different pressures (10 and 20 bar).

Membrane Type	Polymer Structure	Rejection (% NaCl)	Pure water flux/pressure (L/m²-h)/(bar)	Contact Angel (°)
BW30-LE	Polyamide	99.0	63-78/17	26
SW30-XLE	Polyamide	99.6	30-40/55	49
GE-AD	Polyamide	99.75	20-32/55	38

Properties of the membranes used in this study

- ✓ Micropollutants spiked in effluent wastewater:
 - ✓ 100 µg/L for tributyl phosphate and flutriafol (GC/MS Analysis)
 - ✓ 1000 µg/L for dicofol and irgarol (HPLC analysis)

Flux Development

Membranes	Pressure (bar)	JW ¹ (L/m ² .h)	JWW² (L/m².h)	JCW ³ (L/m ² .h)	Flux Decline (%)	Flux Recovery (%)				
	TRIBUTHYL PHOSPHATE									
SW/20	10	3.90	3.25	4.15	0	100				
34430	20	13.48	12.82	12.39	8	92				
	10	6.37	4.91	5.65	12	88				
GE-AD	20	18.31	15.53	18.51	0	100				
DW/20	10	32.47	20.21	24.68	24	76				
DVVJU	20	72.18	41.65	52.25	28	72				
			FLUTRIAF	OL						
SW/20	10	15.49	16.69	16.07	0	100				
300	20	36.7	35.22	40.81	0	100				
	10	11.58	10.37	14.12	0	100				
GE-AD	20	37.27	33.83	31.36	16	84				
DW/20	10	46.75	48.51	49.45	0	100				
BVV3U	20	98.9	107.14	128.57	0	100				

¹JW: Clean water flux before treatment, ²JWW: Raw water flux, ³JCW: Clean water flux after treatment

Flux Development

Membranes	Pressure (bar)	JW ¹ (L/m ² .h)	JWW² (L/m².h)	JCW ³ (L/m ² .h)	Flux Decline (%)	Flux Recovery (%)				
DICOFOL										
SW/20	10	2.0	1.8	1.4	9	71				
34430	20	8.0	6.5	6.8	18	86				
	10	6.7	6.1	5.9	8	89				
GE-AD	20	16.0	12.8	13.2	20	82				
BW/20	10	23.9	22.1	18.0	7	75				
DWJU	20	53.3	52.2	50.2	2	94				
			IRGARO	L						
SW20	10	2.2	2.1	2.0	4	92				
30030	20	7.2	7.0	6.2	2	86				
	10	7.0	6.9	6.5	2	93				
GE-AD	20	15.1	14.4	13.7	4	91				
DW/20	10	16.9	16.3	16.6	3	98				
DVV3U	20	43.2	40.9	37.4	5	86				

¹JW: Clean water flux before treatment, ²JWW: Raw water flux, ³JCW: Clean water flux after treatment

Effect of TMP on Removal of TBP and FTF

			BW30-LE		SW30					
Pressure	Time (min)	EC* (µs/cm)	рН	Removal (%)	EC* (µs/cm)	рН	Removal (%)	EC* (µs/cm)	рН	Removal (%)
			Т	RIBUTH	IYL PH	OSPHA	TE			
	0	1308	8.35	-	1194	8.62	-	1167	8.64	-
10	60	53	8.03	99	77	8.19	96	45	8.02	96
10	120	50	8.21	98	68	8.01	97	39	7.79	97
	180	50	8.07	99	60	8	98	26	8.17	99
	0	1234	8.56	-	1203	8.7	-	1270	8.45	-
	60	24	7.8	99	33	8.29	96	24	8.14	99
20	120	25	8.03	99	33	8.06	98	21	8.32	99
	180	19	8.15	99	31	8.11	98	21	8.34	99
				FL	UTRIA	OL				
	0	1102	7.8	-	1066	7.6	-	1063	7.9	-
10	60	144	7.8	87	37	6.9	97	14.84	7.2	99
10	120	51	7.5	95	27.5	7.1	97	15.12	7.3	99
	180	26	7.2	98	16.24	7.2	99	21.5	7.2	98
	0	1079	7.6	-	1082	7.5	-	1066	8.1	-
	60	77	7.8	93	19.18	7.3	98	19.27	7.1	98
20	120	109	7.6	90	31.4	7.2	97	6.93	7.2	99
	180	86	7.6	92	11.74	7.1	99	10.27	7.2	99

Effect of TMP on Removal of DCF and IRG

			BW30-LE			SW30			GE-AD	
Pressure	Time (min)	EC* (µs/cm)	рН	Removal (%)	EC* (µs/cm)	рН	Removal (%)	EC* (µs/cm)	рН	Removal (%)
				C	ICOFO	L				
	0	1223	7.11	-	1248	7.48	-	1298	7.63	-
10	60	14	8.02	99	69	8.43	95	31	7.25	98
10	120	15	7.69	99	63	6.98	95	25	6.87	98
	180	19	7.96	98	60	7.22	95	15	6.46	99
	0	1303	7.52	-	1316	7.01	-	1414	6.31	-
	60	13	8.33	99	34	7.49	97	23	7.31	98
20	120	15	8.05	99	34	6.89	97	14	7.08	99
	180	13	7.78	99	31	6.91	98	13	7.06	99
				I	RGARC	L				
	0	1232	7.11	-	1355	7.48	-	1265	7.63	-
10	60	26	8.02	98	62	8.43	98	84	7.25	99
10	120	36	7.69	99	68	6.68	98	83	6.87	98
	180	29	7.96	98	64	7.22	98	86	6.46	98
	0	1190	7.52	-	1532	7.01	-	1318	6.31	-
	60	21	8.33	98	54	7.49	98	98	7.31	95
20	120	23	8.05	98	51	6.89	98	86	7.08	95
	180	17	7.78	98	54	6.61	98	74	7.06	95

Conclusions

□ The highest flux recovery:

□ 92 and 100% for SW30 membrane at 10 and 20 bar in TBP test

□ 98% for BW30 membrane at 10 bar pressure in Irgarol test

□ The highest removal efficiency:

□ 98-99% of TBP for BW30 membrane at 10 and 20 bar pressures

- □ 98-99% of Flutriafol for GE-AD membrane at 10 and 20 bar pressures
- □ 98% of Irgarol for for BW30 membrane at 10 bar pressure

□ In generel, GE-AD and BW30 showed superior performance for the removal of pesticides with >96% performance 10 and 20 bar pressures.

Acknowledgements

The authors gratefully acknowledge The Scientific and Technological Research Council of Turkey (TÜBİTAK) for the financial support of the project entitled "Management of Point and Diffuse Pollutant Sources in Yeşilırmak River Basin" with the project number **115Y013**.

Thank You...

nuraya@erciyes.edu.tr