

Olive Mill WasteWater: From a major environmental issue to an eco-responsible valorisation.

P. Dutournié, M.L. Goddard, A.A. Zorpas, S. Jellali, B. Khiari, M. Jeguirim

8th International Conference on Sustainable Solid Waste Management, 23-26 june 2021 Thessaloniki

Context

Olive oil industry generates \rightarrow

Three-phase system → OMWW

byproducts

Mediterranean region → Management → discharge and

Context

Example Construction of the second se

Rapid drying (sun heating and air flow)

Forms a crust at the interface

- \rightarrow Mass transfer (water, oxygen) decrease
- \rightarrow Soil asphyxiation and acidification
- \rightarrow Sterile soils / river and ground water contamination

OMWW

80 % of water

 \rightarrow can be a water source (for irrigation, ...)

Organic compounds

- \rightarrow energy supply,
- \rightarrow soil amendment,
- \rightarrow fertilizer complement

ROULLIER

Water for irrigation or fertilizer solutions

treatment

+ biomass

(sawdust, ...)

drying

Strategy

Energy vector Heat value 7

. . .

Experimental section

RS2E

HAUTE-ALSACE

 \rightarrow Air temperature and flow rate controlled, 50°C

- → Sample thickness studied
- \rightarrow Continuous mass recording,

Experimental drying tests

Operating conditions

suitable with low-cost

solar drying

 \rightarrow Condensation of water in a condensing boiler body cooled by a cooling unit, sampling for analyses of water for reuse purpose

 \rightarrow After drying \rightarrow heat value of solid by-products

Experimental results

Drying tests

Impregnation of OMWW on biomass is interesting

 \rightarrow Quick and effective drying

 \rightarrow Suitable for a solar unit

 \rightarrow increase of LHV (\rightarrow 20%)

Water recovery

afac 150 900

ROULLIER

	рН	ρ (μs/cm)	COD (g/L)
Raw OMWW	4.8	9730	100
IS	3.9	233	2.1
IWC	3.8	267	6.4
OMWW	3.5	293	8.4

HAUTE-ALSACE

ROULLIER

Standards of water quality for irrigation... ex. For Tunisia

Water recovery

	Tunisia	Results
SM (mg/L)	< 30	~ 0
COD (mg/L)	< 90	> 2000
Faecal coliforms (MPN/100 mL)	< 2000	~ 0
Conductivity (µS/cm)	< 7000	< 300
Inorganic ions	= f (ion)	<< standards
Anions (Cl ⁻ , SO ₄ ²⁻ ,)	= f (ion)	<< standards
рН	6.5 - 8.5	~ 3.8-3.9

→ Additional analyses (HPLC, μ GC, ...) → identification of organic compounds in solution

Water recovery

Identification of chemicals in recovered waters (GC-MS)

In OMWW recovered water

- fatty acids
- tyrosol, glycerol,
- different sugars,

- ...

In waters from Impregnated biomasses (same chemicals +)

- short-chain acids
- amino-acids,
- urea,
- ...

→Biomasses supplied additional chemicals →
→Interesting nutriments for agricultural purpose

afac 150 900

HAUTE-ALSACE

ROULLIER

Water recovery

Additional treatment for $pH \rightarrow$ contact with crushed oyster shells and marble powder

Solutions "water from"	adsorbent	рН	COD (g/L)
OMWW		3.5	8.4
OMWW	Oyster shell	6.6	-
OMWW	Marble	6.8	2.2
Impregnated OMWW		3.9	2.1
Impregnated OMWW	Oyster shell	6.6	1.6
Impregnated OMWW	Marble	6.8	1.2

Water recovery

After pH correction \rightarrow agricultural value

Can be used as fertilizer complement

for irrigation after dilution

Nutritive solution for hydroponic agriculture

Conclusion

Eco-frendly alternatives to OMWW discharge and natural storage are viable

 \rightarrow Drying of impregnated biomasses

 \rightarrow After drying, solid by-products can be densified and used as fuel or as soil improver

→ After condensation, water can be recovered and used for irrigation purpose (after pH adjustment and dilution) or fertilizer complement

Thank you for your attention