

Production of ethyl esters of

volatile fatty acids from food waste

Technical

THESSALONIKI2021

GLOBAL WEERT

www.thessaloniki2021.uest.gr

WORLD BIOGAS

ASSOCIATION

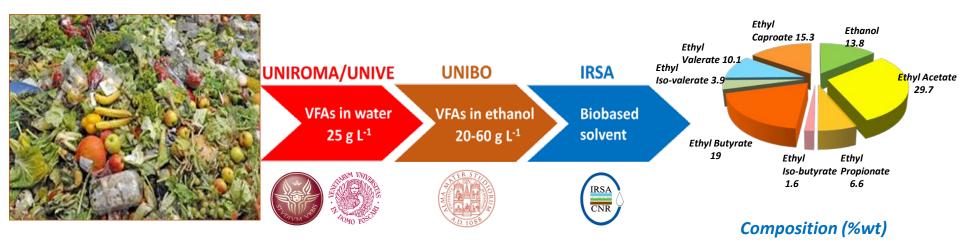
<u>C. Pastore</u>, L. di Bitonto, F. Valentino, G. Moretto, M. Gottardo, G.A. Martinez, S. Notarfrancesco, E. Morselli, L. Bertin P. Pavan, D. Bolzonella, M. Majone

CNR IRSA, Bari, Viale De Blasio 5

carlo.pastore@ba.irsa.cnr.it

Green Biobased-Chemicals

Ethyl esters of VFAs


RCOOEt

R= -CH₃, -CH₂CH₃, -CH₂CH₂CH₃

Over three million (MM) tons of EA have been produced worldwide, most generated by using sulfuric acid as a catalyst through a conventional process.

Green Biobased-Chemicals: Production Route

High Technology Readyness Level (TRL 5-6): Pilot-Scale investigation

• Treviso (TV)

A.T.S. S.r.I. WWTP

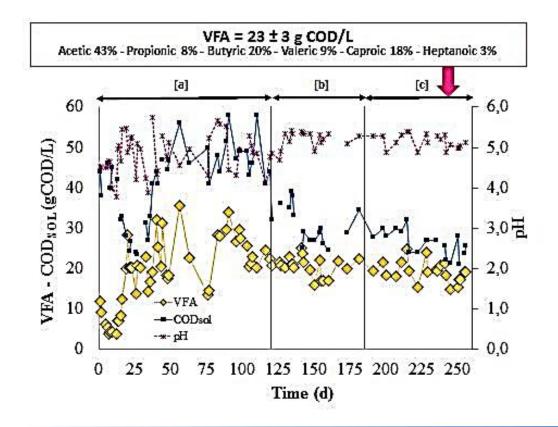
Step 1: Acidogenic fermentation

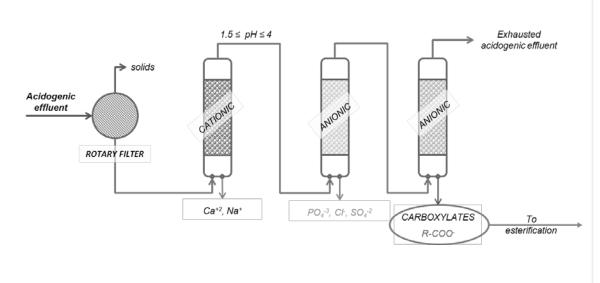
Feed characteristics

OFMSW* + SS mixture

Parameter	Unit	40-45% v/v OFMSW	
TS	gTS/kg	53 - 90	
TVS	gTVS/kg	41 - 73	
TVS/TS	%	77.5 – 81.4	
рН	-	4.5 – 4.7	
COD _{VFA}	gCOD/L	3.6 - 4.9	
COD _{SOL}	gCOD/L	21 - 38	
TKN	gN/kgTS	31 - 34	
P _{TOT}	gP/kgTS	5.2 - 7.1	
COD _{SOL} :N:P	g	100 : 3 : 0.9	

Step 1: Acidogenic fermentation

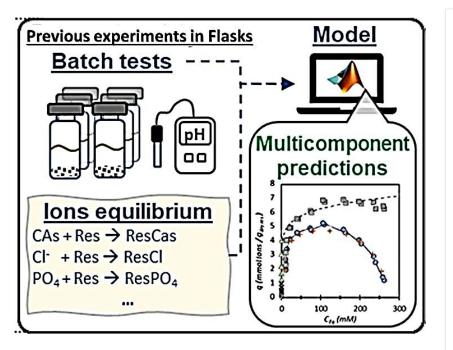

Fermenter conditions


CSTR Volume = 380 L HRT = SRT = 6 days pH = 5.0-5.5

- Condition [a] thermophilic
 T=55°C, OLR=9.1 kgVS/m³ d, 40-45% OFMSW
- Condition [b] thermophilic
 T=55°C, OLR=4.4 kgVS/m³ d, 30-35% OFMSW
- Condition [c] mesophilic
 T=42°C, OLR=4.0 kgVS/m³ d, 30-35% OFMSW

Acidogenic Fermentation profiles

Carboxylic acids Recovery – developed strategy

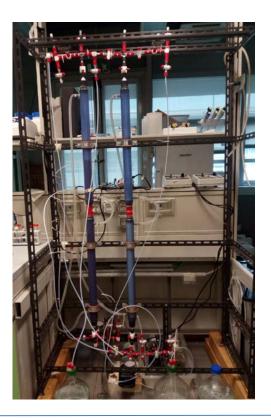


- Through this configuration, the mineral components can be captured and the competition of up-taking of VFAs are significantly reduced, maximizing their recovery yield in the last column.
- A two-step study was conducted:

 a fundamental study which evaluate all the equilibrium and interaction involved during adsorption and ii) a pilot test in which the recovery of the final VFA and regeneration of the solid phase were the final target.

Experimental Set-up and main results

(1 – batch tests)


Experimental set-up:

- Preliminary solid/liquid separation by conventional protocols (centrifugation / filtration)
- Na⁺ separation and pH adjustment from 5.4 to about 1.5 by the exploitation of the strong cationic Lewatit-S2568H resin
- Anionic resin screening by batch adsorption tests (definition of adsorption isotherm models)

Main results:

- Besides confirming anions competition for resin exchange sites, results also evidenced that Na⁺ competed with the anionic resin exchange sites for binding the carboxylates
- Other chemicals (else than VFAs) exerted a negligible competition for carboxylates adsorption.

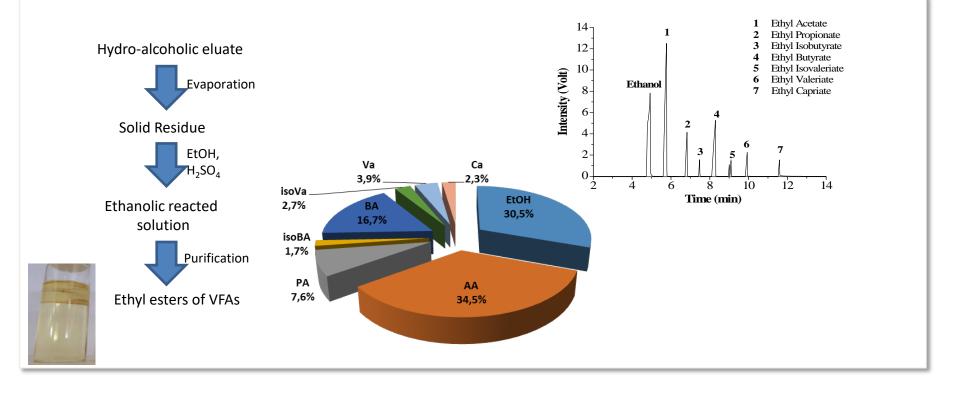
Experimental Set-up and main results

(2 - semi pilot tests)

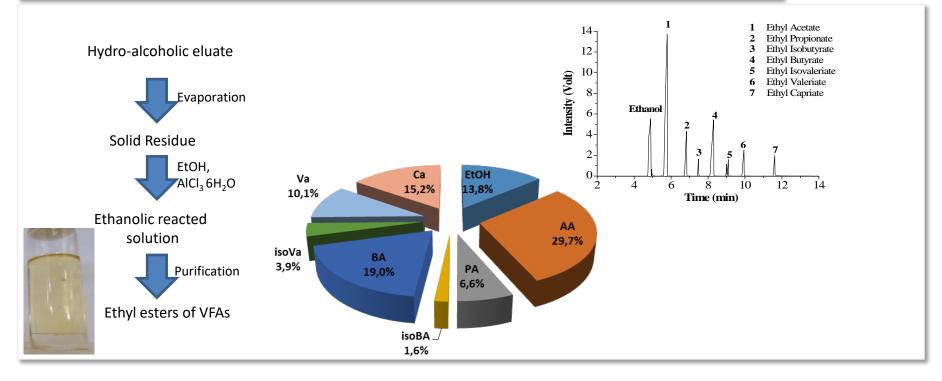

Experimental set up:

- The adsorbtion column was filled with resin Lewatit S365 and fed under a flow rate of 40 ml/min

Main results:

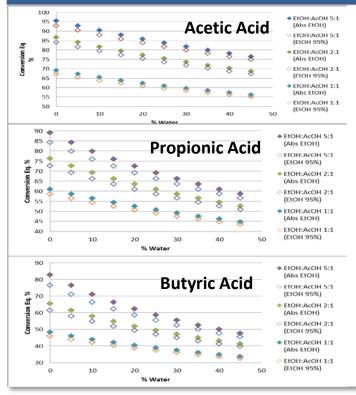

- the resin adsorption capacity was exhausted after 11 dimensionless retention times (about 80 minutes).
- The extraction was carried out by using basified or acidified ethanol to desorb VFAs
- more than 90% of VFAs were recovered in acidified alcohol
- Two different set of VFAs solutions were obtained: VFAs in alkaline (NaOH) and acid (H₂SO₄) ethanol, with VFAs content in the range of 20-60 g/L.

Characterization of the hydro-ethanolic SPE eluates

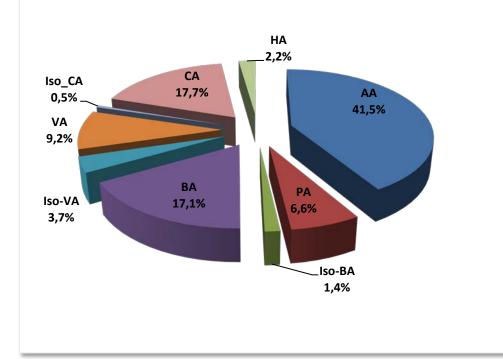


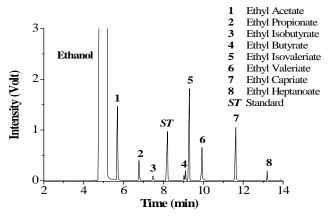
Customized protocols were designed for the two different (alkaline and acid) eluates

<u>Alkaline hydro-alcoholic</u> eluates processing (use of H₂SO₄)

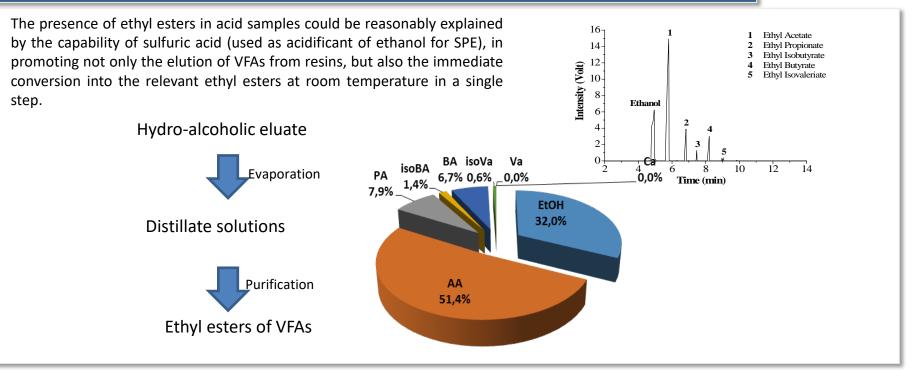


<u>Alkaline hydro-alcoholic</u> eluates processing (use of AlCl₃6H₂O)


Carlo Pastore, CNR IRSA

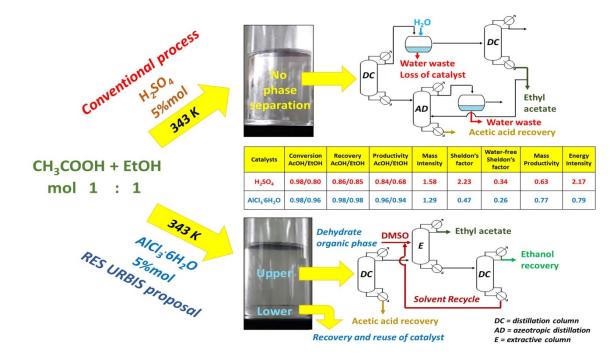

Direct use of acid SPE Eluates and evaluation of the effect of co-presence of water

- The presence of water in the reactive system is critical, especially for long chained acids
- The use of Ethanol 95% can be considered acceptable for obtaining satisfying results


Composition of hydro-alcoholic solution

GC-FID profile of acid SPE eluate

<u>Acid hydro-alcoholic</u> solution processing


8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT, 23-25 June 2021

Sum up

%	Sample 1	Sample 2	Sample 3	Sample 4
	Biosolvent from Alkaline Eluate catalysed with H ₂ SO ₄ (sample1)	Biosolvent from Alkaline Eluate catalysed with H ₂ SO ₄ (sample2)	Biosolvent from Alkaline Eluate catalysed with AlCl ₃ ·GH ₂ O	Biosolvents from acid Eluates
Ethanol	30.5	20.3	13.8	32
Ethyl acetate	34.5	40.8	29.7	51.4
Ethyl propionate	7.6	8.5	6.6	7.9
Iso-Butyrate	1.7	1.8	1.6	1.4
Butyrate	16.7	17.4	19.0	6.7
Iso-Valeriate	2.7	3.0	4.0	0.6
Valeriate	3.9	4.8	10.1	-
Capriate	2.3	3.3	15.2	-

Four different samples of biosolvents were eventually achieved

Study of the direct esterification of VFAs and EtOH promoted by AlCl₃·6H₂O

Journal of Cleaner Production 239 (2019) 118112

- Fermentative conditions were setted up to obtain a selective production of VFAs from OFMSW
- A specific configuration of adsorptive comumns was designed to maximes the recovery of VFAs
- AlCl₃·6H₂O is capable of promoting direct esterification between VFAs and EtOH, inducing a convenient separation of phases among products and residual reagents;
- It efficiently works on pure VFAs as well as on real mixture of VFAs;
- It is robust enough to be used on crude VFAs mixture obtained from food waste fermentation, also in presence of «contaminating» salts;
- A sustainable «green process» was eventually optimised;
- Very limited amounts of waste are co-produced at the point to be considered a «zero-waste-discharge» process.

Acknowledgements

Financial support by EU Horizon 2020 Programme under Grant Agreement 730349

Thank you for your kind attention!

Please visit our internet site:

http://www.resurbis.eu/

8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT