

DEPARTMENT OF FOOD SCIENCE AND TECHNOLOGY, SCHOOL OF AGRICULTURE, ARISTOTLE UNIVERSITY OF THESSALONIKI

HOLISTIC EXPLOITATION OF SPENT COFFEE GROUNDS: RECOVERY OF PHENOLIC COMPOUNDS AND USE AS BIOSORBENT

NIKOLETTA SOLOMAKOU, ATHANASIA M. GOULA

THESSALONIKI, JUNE 2021

MAIN SPECIES FOR COMMERCIAL PRODUCTION

COFFEA ARABICA (ARABICA) COFFEA CANEPHORA VAR. ROBUSTA (ROBUSTA)

• Superior due to its milder and

more flavorful taste (Bertrand et al., 2003)

ICO: Coffee consumption 1.24 million bags of coffee 169.34 million bags by the year 2019/2020 (ICO, 2019)

COFFEE BY-PRODUCTS

SPENT COFFEE GROUNDS (SCG)

- SCG consists a dark colored solid residue, with high moisture content, coffee aroma and high organic content
- > 1 ton of green coffee beans \Rightarrow 650 kg of SCG
- > 1 kg of soluble coffee \Rightarrow 2 kg of wet SCG

(Murthy and Naidu, 2012 and Mata et al., 2018)

> It consists mainly of carbohydrates, lipids, proteins and polyphenols

COMPOSITION OF SCG

Component	Content
Moisture	1.18 - 74.72 (%)
Cellulose	$12.40 \pm 0.79 \text{ (g/100g d.b.)}$
Hemicellulose	$39.10 \pm 1.94 \text{ (g/100g d.b.)}$
Arabinose	3.60 – 6 (g/100g d.b.)
Mannose	19.07 – 47 (g/100g d.b.)
Galactose	16.43 – 30 (g/100g d.b.)
	$23.90 \pm 1.70 \text{ (g/100g d.b.)}$
Lignin	Insoluble 17.59 ± 1.56
	Soluble 6.31 ± 0.37
Fat	2.29 – 19 (g/100g d.b.)
Protein	4.3 -17.44 (g/100g d.b.)
	36.87 - 60.46 (g/100g d.b.)
Total dietary fibers	Insoluble 50.78 ± 1.58
	Soluble 9.68 ± 2.70

PHENOLIC COMPOUNDS

(Acevedo et al., 2013; Ballesteros et al., 2014; Cerino-Córdova et al., 2020)

WASTE MANAGEMENT

Waste management of coffee by-products

Waste management of coffee by-products (U.S. Environmental Protection Agency (EPA, 2017).

POTENTIAL USES OF SCG

RECOVERY OF PHENOLIC COMPOUNDS FROM SCG

CONVENTIONAL MACERATION EXTRACTION

ULTRASOUND ASSISTED EXTRACTION

USE OF SCG AS BIOSORBENT

 \checkmark The best, effective, low-cost and frequently used method

Transfer of a solute from either a gas or liquid/solution to a solid. The solute is held to the surface of the solid as a result of intermolecular attraction with the solid molecules.

FACTORS AFFECTING THE ADSORPTION PROCESS

Adsorption temperature

• pH

- Solvent/sorbent ratio
- Initial concentration of phenolics
- Particle size of biosorbent

COMMERCIAL ADSORBENTS

Polymer Based Compounds

Polar or Non Polar functional groups in a polymer matrix Examples: Polymers & Resins

Polymer Resins

BIOSORBENTS

Biosorbent	Adsorbed compound	Yield (%)	Reference	Biosorbent	Adsorbed compound	Yield (%)	Reference
Pine wood char		3-54	Dinesh Mohan <i>et al.,</i> 2007	Azolla	Polyphenols from OMW	-	Ena et al., 2012
Oak bark char	Pb, Cd, Ar from water	26-98		Banana peel	Phenolic compounds from OMW	60–88	Achak et al., 2009
	Cd from water	77.0- 89.2	Jamil et al.,	Nutshells	Phenolic compounds from aqueous solutions	-	Goud et al., 2005
Banana peel	Pb from water	76.0 -58.3	2010	Olive pomace	Total phenols from OMW	≤40%	Stasinakis et al., 2008
	Cr from leather	ther 99.1- 100	Jamil et al.,	Olive stone and pulp	Total phenols from OMW	13.5-73%	Galiatsou et al., 2002
Banana pith	tanning Direct red from water	55-80	2008 Namasivayam, 1998	Pomegranate peel and orange juice by- product	Phenolic compounds from OMW	≤93.13, 89.59% respectively	Ververi and Goula 2019
	Acid brilliant blue			Pomegranate seeds	Phenolic compounds from OMW	≤92.8	Papaoikonomou <i>et al.,</i> 2019
	from water	65-95		Wheat bran	Phenolic compounds from OMW	≤94	Achak et al., 2014
Apple pomace	Textile dye effluent	91-100	Robinson <i>et al.,</i> 2001	Wheat husk	Phenols from aqueous solution	91.7	Devaanshi et al., 2017

OLIVE MILL WASTEWATER

Liquid waste of three-phAqueous, dark, foul sme	ase extraction system Production	n Inputs	Outputs
 High organic content (57 Acidic character (pH 2.24) Phenolic compounds (up Solid matter (total solids) 	7.2-62.1%) -5.9) 5 to 80 g/L) Traditiona 5 up to 20 g/L) pressing	I Olives (1000 kg) Washing water (100-120 k	Oil (200 kg) Solid waste (400 kg) Wastewater (600 kg)
 High phytotoxicity Threatening aquatic life Mediterranean countries: 	Two-phase 2.4 million tons of system	e Olives (1000 kg) Washing water (100-120 k	Oil (200 kg) g) Solid waste (800-950 kg)
olives per year (95% of world	d production)	Olives (1000 kg)	Oil (200 kg)

Three-phase

system

Vashing water (100-120 kg)

Mixing water (500-1000 kg)

Solid waste (500-600 kg)

Wastewater (1000-1200 L)

(Ochando-Pulido et al., 2013)

OMW MANAGEMENT

AIM OF THE STUDY

- ✓ Recovery of valuable compounds from SCG
- ✓ Optimization of extraction using novel techniques
- ✓ Holistic exploitation of SCG (after extraction of phenolic compounds) as biosorbent
- ✓ **Optimization** of batch adsorption process
- ✓ Development and proposal of a novel, lowcost method for the recovery of bioactive compounds from other food industries' wastes using SCG as biosorbent and their exploitation as food additives in food industry

WASTE PREPARATION & EXTRACTION PROCESS

EXPERIMENTAL DESIGN-CONVENTIONAL EXTRACTION

EXPERIMENTAL DESIGN-ULTRASOUND ASSISTED EXTRACTION

Duration: 20 min

130 W, 20 kHz, VCX-130 Sonics & Materials, with Ti-Al-V probe (13 mm)

EXPERIMENTAL DESIGN-ADSORPTION

Every experiment in 6 intervals: 0, 10, 20, 40, 60, 120 min

CONVENTIONAL EXTRACTION

ULTRASOUND ASSISTED EXTRACTION

	Optimum Conditions				
Optimum Yield: 18.54 mg/g d.b	L/S	Solvent (% EtOH)	т∘с	Amplitude	
	53 mL/g	50.5%	60°C	60%	

GALLIC ACID ADSORPTION YIELD-EFFECT OF VARIOUS PARAMETERS

Adsorption Yield: 0-70.69%

GALLIC ACID/OMW ADSORPTION

CONCLUSIONS

- Conventional and UAE presented similar yield rates
- UAE: Extraction time
 Amount of solvent required
- SCG can be used as a biosorbent, with adsorption efficiency up to 70%
- Further studies are required in order to:
 - Optimize batch adsorption yield of OMW bioactive compounds
 - Evaluate the adsorption yield of other main
 phenolic compounds of OMW, besides gallic acid
 - Investigate the adsorption mechanism and the possible adsorption sites of SCG

