

Hydrothermal Carbonisation of Spent Coffee Grounds and Subsequent Anaerobic Digestion of Process Water

Bethany Campbell

Dr Judy Lee Prof. Rex Thorpe Dominik Peus

Waste Biomass

- Abundant
- High water content
- Low energy content

Sewage sludge 80 % moisture

Food waste 70 % moisture

Green waste 29 - 46 % moisture

Hydrothermal carbonisation (HTC)

- Complete immersion in liquid water
- 180 300 °C
- Autogenous or applied pressure (10 – 50 bar)

HTC Products

- Hydrochar solid product
 - Reduced O/C and H/C ratios
 - Improved fuel and combustion properties
 - Easier to dewater
- Polluted process water
 - High COD and BOD
 - Low pH
 - Colouring
 - Solubilised inorganic Content
- Gas

Spent coffee grounds (SCG)

- Consistent model system for scientific purposes
- 10 million tons of coffee produced in 2018 globally [1]
- ~ 6 million tons of SCG as waste each year [2]
- Currently incinerated
- Moisture content of 55 80 % [3]

 $COD = 33,700 \text{ mgO}_2/L$ pH = 3.92

Dischargeable effluent [1] COD < 125 mgO₂/L Or > 75% COD reduction

[1] Council Directive 91/271/EEC

HTC of SCG

	Input		
		Value	Error (+/-)
G 4 G 99	Mass (g)	60	1
Spent Coffee Grounds	TC (%)	53.6	0.9
	C (g)	32.2	0.8
Total	Carbon (g)	32.2	0.8

- Solid Yield 56 ± 2 %
- Carbon Yield to Solid 82 ± 4 %
- Carbon Yield to Liquid 17 ± 1 %

Output					
		Value	Error (+/-)		
	Mass (g)	33.4	1.1		
Char	TC (%)	79.2	2.7		
	Solid C (g)	26.5	1.3		
	Mass (kg)	0.55	0.00		
Liquid	TC (g/L)	9.83	0.44		
	C (g)	5.4	0.2		
	RHP (bar)	2.8	0.7		
Gas	Head vol (ml)	200	20		
	CO2 (mol)	0.023	0.006		
	C (g)	0.276	0.006		
Total	Carbon (g)	32.1	1.3		

Anaerobic Digestion of Treated and Untreated PW

Experiment	AD I	AD II
Feed	Day -14 - 0: glucose	Day -14 - 0: glucose
	Day 1 – 146: untreated process water	Day 1 – 34: untreated process water
		Day 35 – 77: treated process water

Anaerobic Digestion of Untreated PW

Anaerobic Digestion of Untreated PW

Anaerobic Digestion of Untreated PW

Conclusion

- HTC recovers 82 % of the C from SCG
- Subsequent AD recovers up to 49% of the aqueous COD as CH₄
- Total C recovery as useable fuel = 90%
- No obvious inhibitory compounds
- Issues with stability potentially due to overloading at start of experiment

Thank you – any questions?

Acknowledgements:

Antaco – Funding and Project direction

Dan Driscoll and Ben Gibbons (University of Surrey) – Aid in Use of Analytical Instruments

Anaerobic Digestion of Treated and Untreated PW

 $\frac{(yesterday\ absolute\ COD\ (g)after\ addition) - (today\ absolute\ COD\ (g)before\ removal)}{absolute\ COD\ (g)added}$

COD degradation efficiency, t (%)

$$=\frac{COD_{AD,t-1}.V_{AD}-COD_{AD,t}.V_{AD}}{COD_{Inf,t-1}.V_{Inf}}$$