Market Uptake Support for Intermediate Bioenergy Carriers

MUSIC

«Residual biomass mobilization strategies for intermediate bioenergy carriers

Myrsini Christou, Kostas Tsiotas, Christos Zafiris CRES - Center for Renewable Energy Sources and Saving

Kyriakos Panopoulos, Tzouliana Kraia, George Kardaras CERTH - Center for Research and Technology Hellas

8th International Conference on Sustainable Solid Waste Management, Thessaloniki, 23-25 JUNE 2021

CONTENTS

- MUSIC project
- Intermediate bioenergy carriers
- Torrefaction technology
- The Greek Case-study
- Biomass supply strategies
- Conclusions

RATIONALE & OVERALL OBJECTIVE

Why Intermediate Bioenergy Carriers – IBCs ?

- Biomass is bulky and difficult to handle.
- Converting it into intermediary products like Pyrolysis Oil, Torrefied Biomass & Microbial Oil increases the energy density and makes it easier to transport, store and use.

General objective

 To facilitate the further introduction of intermediate bioenergy carriers by developing feedstock mobilisation strategies, improved logistics and IBC trade centres.

EMPYRO

www.music-h2020.eu

Member organisations

THE MUSIC TEAM

Renewable energy advisory SME's

3 year project (Sep 2019 – Aug 2022), ca. 3M Euro budget, 16 partners from 7 countries

INTERMEDIATE BIOENERGY CARRIERS

TORREFACTION

A thermal process at 200-300 °C in absence of oxygen to convert biomass into a coal-like material, which has better fuel characteristics than the original biomass.

During torrefaction, three different products are produced:

- (1) brown to black uniform solid biomass, which is used for bioenergy applications,
- (2) condensable volatile organic compounds comprising water, acetic acid, aldehydes, alcohols, and ketones,
- (3) non-condensable gases like CO2, CO, and small amounts of methane.

Stages of torrefaction

Time

Advantages of torrefaction

- Higher moisture (14-60 wt)%
- Lower heating value (6-13 MJ/kg)
- Lower energy density (0,7-1 MWh/m3)
- Higher O/C (0,5-0,8) and H/C ratios (1,2-2)
- Hygroscopic
- Poorer grindability
- Non-uniform properties

Solid raw biomass

Wood (branches; bark)
Agricultural residues
Grass (various types)
Demolition wood
Solid Recovered Fuel

Status of torrefaction initiatives as of early 2015

Developer	Technology	Location(s)	Production capacity (ton/a)	Demo scale: 0.5- 2 tph Commercial scale: > 2tph	Full integration (pre-treatment, torrefaction, combustion, heat cycle, densification)	Status
Clean Electricity Generation (UK)	Oscillating bed	Derby (UK)	30,000	Commercial scale	Yes	Available/operational
Horizon Bioenergy (NL)	Oscillating belt conveyor	Steenwijk (NL)	45,000	Commercial scale	Yes	Dismantled
Solvay (FR) / New Biomass Energy (USA)	Screw reactor	Quitman (USA/MS)	80,000	Commercial scale	Yes	Available/operational
Topell Energy (NL)	Fluidised bed	Duiven (NL)	60,000	Commercial scale	Yes	Mothballed
Torr-Coal B.V. (NL)	Rotary drum	Dilsen-Stokkem (BE)	30,000	Commercial scale	Yes	Available/operational
Airex (CAN/QC)	Cyclonic bed	Bécancour (CAN/QC)	16,000	Demonstration scale		Available/operational
Agri-Tech Producers LLC (USA/SC)	Screw reactor	Allendale (USA/SC)	13,000	Demonstration scale	Yes	Scheduled to be built
Andritz (AT)	Rotary drum	Frohnleiten (AT)	10,000	Demonstration scale	Yes	Out-of-service
Andritz (DK) / ECN (NL)	Moving bed	Stenderup (DK)	10,000	Demonstration scale		Unknown
BioEndev (SWE)	Dedicated screw reactor	Holmsund, Umea (SWE)	16,000	Demonstration scale	Yes	Available (2015)
CMI NESA (BE)	Multiple hearth	Seraing (BE)	Undefined	Demonstration scale		Unknown
Earth Care Products (USA)	Rotary drum	Independence (USA/KS)	20,000	Demonstration scale		Available/operational
Grupo Lantec (SP)	Moving bed	Urnieta (SP)	20,000	Demonstration scale		Unknown
Integro Earth Fuels, LLC (USA)	Multiple hearth	Greenville (USA/SC)	11,000	Demonstration scale		Unknown
LMK Energy (FR)	Moving bed	Mazingarbe (FR)	20,000	Demonstration scale		Unknown
River Basin Energy (USA)	Undefined	Laramie (USA/WY)	Undefined	Demonstration scale		Available/operational
Teal Sales Inc (USA)	Rotary drum	White Castle (USA/LA)	15,000	Demonstration scale		Available/operational
Torrec (FI)	Moving bed	Mikkeli (FI)	10,000	Demonstration scale		Available/operational
Agri-Tech Producers LLC (US/SC)	Screw reactor	Raleigh (USA/NC)	Undefined	Pilot stage		Available/operational
Airex (CAN/QC)	Cyclonic bed	Rouyn-Noranda (CAN/ QC)	Undefined	Pilot stage		Available/operational
Airex (CAN/QC)	Cyclonic bed	Trois-Rivières (CAN/QC)	Undefined	Pilot stage		Available/operational
Arigna Fuels (IR)	Screw reactor	County Roscommon (IR)	Undefined	Pilot stage		Available/operational
CENER (SP)	Rotary drum	Aoiz (SP)	Undefined	Pilot scale		Available/operational
Terra Green Energy (USA)	Multiple hearth	McKean County (USA/ PA)	Undefined	Pilot scale		Available/operational
Wyssmont (USA)	Multiple hearth	Fort Lee (USA/NJ)	Undefined	Pilot scale		Unknown
CEA (FR)	Multiple hearth	Paris (FR)	Undefined	Laboratory scale		Available/operational
Rotawave, Ltd. (UK)	Microwave	Chester (UK)	Undefined	Laboratory scale		Unknown
Bio Energy Development & Production (CAN)	Fluidised bed	Nova Scotia (CAN/NS)	Undefined	Unknown		Unknown

IEA Bioenergy

GREEK CASE STUDY: USE OF TORREFIED BIOMASS IN DISTRICT HEATING PLANT

- ➢Operates an extensive district heating network 2,000 public and residential buildings 3,000 to 5,000 consumers.
- From 2005 until 2020 heat capacity from Amyntaio CHP plant at 7€/MWh.
- ➢Implemented a 30 MW_{th} biomass/lignite co-firing district heating plant.
- ➤Current fuel-mix (50%-50% energy ratio).
 - >Wood-chips (20 €/MWh)
 - ≻Lignite **(13€/MWh)**

Produced heat selling price rose from 41,3 €/MWh (2019) to 56,8 €/MWh (2021).

Theoretic biomass potential in West Macedonia

Kastoria region:

Total biomass:~ 47,000 t dm/y

- 41,000 t dm/y mainly straw
- 4,000 t dm/y pruning
- 1,800 t dm/y firewood

Florina region:

Total biomass:~ 120,000 t dm/y

- 104,000 t dm/y cereals (of which 55,600 t dm/y is corn residues)
- 11,000 t dm/y pruning (vineyards, fruit trees)

Kozani region:

Total biomass:~ 225,000 t dm/y

- 203,000 t dm/y cereals (of which 50,000 t dm/y is corn residues)
- 8,000 t dm/y pruning (vineyards, fruit trees)

Grevena region: Total biomass:~ 91,000 t dm/y mainly straw

Biomass availability

Availability of biomass near the district heating plant is significant, including mainly corn stalks and cobs and tree pruning, still not exploited due to challenging logistics.

Biomass availability year around												
Months	1	2	3	4	5	6	7	8	9	10	11	12
Straw												
Corn and sunflower residues												
Pruning												
Forest residues												
Residues from forest industries												

BIOMASS MOBILIZATION

Music-mygis model

Objective: A GIS application to help the user select the fields where the biomass will be collected, places to be stored/torrefied and sold and calculate the related logistics costs.

MODEL PARAMETERS

- Selling point: the final destination of the biomass (client).
- **Transportation vehicle**, which will transport the biomass from the storage point to the selling point. Each vehicle type takes into consideration:
 - Capacity (volume)
 - Maximum payload (weight)
 - Biomass packaging type (e.g.. Big bags, rectangular bales, etc.)
 - Transportation cost (Fuel/oil consumption and costs, service costs etc.)
 - Time and cost to load/unload
- Storage point: is the collection point of all biomass before it is transported to the client.
- Collection vehicle, which will transport the biomass from the collection points to the storage point. It has similar functionality to the transportation vehicle.
- **Crops**: Crop residues (maize, vineyards, pome fruits, stone fruits and other tree species).

Selection of crops and vehicles

cropcode	biomass_cal_value	biomass_annual_ef	crop_gr	crop_en	id	char_cal_value	char_annual_ef
45.2	18330	0.21	Λοιπές καλλιέργειες - δενδρώδεις	Other crops - arboraceous	4	20070	0.17
36.3	19130	0.42	Λοιποί αμπελώνες για επιτραπέζια χρήση	Other vineyards for table use	8	20950	0.24
36.2	19130	0.42	Λοιποί αμπελώνες για παραγωγή οίνου	Vineyards for wine production	9	20950	0.24
1	17570	0.12	Σιτάρι	Wheat	11	20910	0.09
12	17770	0.31	Βαμβάκι	Cotton	15	21150	0.26
15	20080	0.13	Ελαιώνες πιστοποιημένης ελαιοκαλλιέργειας	Certified cultivation olive grove	16	21990	0.11
16	16090	0.14	Ενεργειακές καλλιέργειες	Energy crops	17	19140	0.12
2	16900	0.12	Λοιπά σιτηρά	Other grain	12	20110	0.09
4	16090	0.14	Ελαιούχοι σπόροι	Oilseeds	13	17700	0.12
21	19460	0.5	Καρποί με κέλυφος	Husk fruits	19	21410	0.43
49	20250	0.21	Λοιπές καλλιέργειες - δασικά δέντρα	Other crops - forest trees	5	22170	0.17
66	19650	0.53	Πυρηνόκαρπα	Stone fruits	6	21610	0.27
67	19220	0.41	Μηλομδή	Pome fruits	7	21040	0.7
20.2	19960	0.53	Ροδακινιές μεταποίησης	Industrial production peaches	1	21860	0.42
3.1	20080	0.4	Αραβόσιτος ποτιστικός	Irrigation com	2	23890	0.14

Choose tra	ansport	ation	/enicle	
-71-		Ford	d Ran	ger
-	0	D	**	ă
	0	0	1.31	1.28
-	s	cania	R164	1L480
	67	D	-22-	*
armely.	5.54	7.99	7	6.89
-	Tr	actor	with	trailer
and Aut	8	A	-32-	*
- 104	2 22	3.2	2.8	2.55

Vehicle specifications is not a geographic	: layer
Can carry Charcoal - Powder	Service cost (€/km)
YES	0.09
Maximum payload (tn) Charcoal - Pellets	Can carry Biomass - Rectangular bale
13.00	YES
Vehicle name	Can carry Biomass - Bulk
Scania R164L480	YES
Capacity (m3)	Can carry Biomass - Round bale
20	YES
Average speed (km/hr)	Can carry Biomass - Big bags
65	YES
Work cost (€/hr)	Vehicle type
15.00	Truck
Load/unload time (hrs)	userID
2.00	0
Fuel cost (€/I)	Maximum payload (tn)
1.20	20.00
Fuel consumption (//km) 0.15	Maximum payload (tn) Biomass - Rectangular bales 5.54
Payback €/year (vehicle) 0	Maximum payload (tn) Biomass - Round bales 7.99
Payback €/year (trailer)	Maximum payload (tn) Biomass - Bulk
5500	7.00
Year expenses (€) 1000	Maximum payload (tn) Biomass - Big bags 6.89
	Maximum payload (tn) Charcoal - Powder 5.40

The model output consists of the **total biomass transportation cost** (as a sum of fixed, working, fuel and service cost), and the total **distance**, routes and time for the **specific collection-storage-sale supply chain**.

Individual costs for the two stages:	Total Cost				
(Field->Storage Point					
Storage Point ->Selling Point)					
Type of the vehicle selected	Collection-storage trips				
Transport method	Collection-Storage total				
Total quantity (t)	(km)				
Routes	Storage - Sell trips (km)				
Total distance (km)	Storage Sell total (km)				
Distance based-time (hours)	Total routes				
Transport time (hours)	Total distance (km)				
Fixed cost (€/h)	Total time (hours)				
Work cost (€/h and €/t)	Total cost (€)				
Fuel cost (€/h and €/t)	Grand total per ton (€)				
Service cost (€/h and €/t)	Grand total per MJ (€)				
Energy content (MJ)					
Cost (€)					
Cost per ton (€/t)					
Cost per MJ (€/MJ)					

Platform for mobilising biomass resources

A smart phone

1. 1. Support the market development from mobilisation of feedstock towards IBC production and use 2. Farmers will advertise their available biomass by automatically uploading it in a database 3. IBC plants can then organize the feedstock logistics towards collection of the desired types of biomass 4. Photographs, geographic and quantity of the available biomass and other relevant data are upload on the platform, so that IBC producers can organize efficient collection

Scenarios for use of torrefied biomass in district heating plants

- Biomass procurement is a significant cost item
- Current fuel-mix (50%-50% energy ratio).
 >Wood-chips: 89 €/t (20 €/MWh)
 >Lignite: 35 €/τόνο (13€/MWh)
- Procurement costs for corn residues: 24 €/t and transport costs : 0,05 €/ tkm.
- The torrefaction investment cost is mainly related to the torrefaction reactor size and can even double the total cost, depending on the application
- Trade of excess torrefied biomass could mitigate investment costs.

CONCLUSIONS

- This ongoing work is the stepping stone and constitutes the road map for large-scale implementation at multiple regional (district heating & power) plants and relevant (cement, quick lime or magnesite) industries in the region.
- \blacktriangleright Synergies farmers, transporters, end-users \rightarrow Mobilization of unexploited quantities \rightarrow Security of supply.
- The investigation of the local agricultural practices can lead to a better understanding of the biomass supply chain and the associated costs.
- ➤ Torrefaction can homogenize biomass feedstocks with diverse characteristics → standardization → contractualization.
- The applicability of torrefaction in a regional level is highly dependent on the cost minimization of the overall torrefied biomass value chain.
- The torrefaction investment cost is mainly related to the torrefaction reactor size and can even double the total cost, depending on the application.
- Lignite (even with the carbon tax) and wood-chips fuel mix is the most attractive option from an economic point of view. However, it is only feasible as long as lignite is available (until 2025).
- Although torrefaction does not seem to be financially advantageous for DETEPA, it could solve the handling issues of non-woody biomass and create a secondary market of standardized solid biomass fuels, that will generate enough revenue for DETEPA to offset investment costs.
- Finally, lignite phase-out is a huge challenge for Western Macedonia:
 - > The energy sector will suffer from significant increases in production costs.
 - ➢ Region's GDP is deeply intertwined with PPCs activities.

Thank you for your attention!

For more info: mchrist@cres.gr WWW.MUSIC-H2020.EU #MUSIC_H2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 857806.

Market Uptake Support for Intermediate Bioenergy Carriers