

Ca' Foscari

University

of Venice

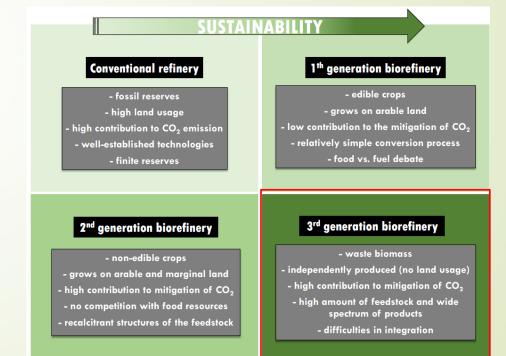
GREEN**P**ROPULSION**L**AB

Co-fermentation of organic waste and sewage sludge after cavitation for VFAs production and subsequent biomethanization

A. Lanfranchi¹, G. Tassinato², F. Valentino¹, C. Cavinato¹ ¹Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Mestre, 30174, Italy ²Green Propulsion Laboratory, Veritas s.p.a., Fusina (VE), 30175, Italy

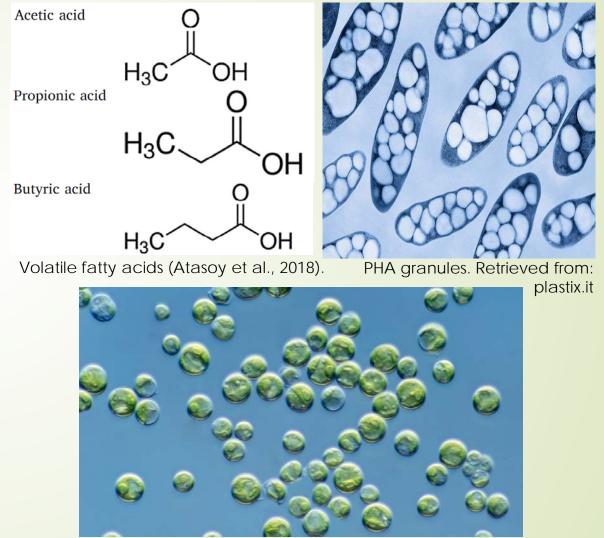
Introduction

Background


Climate change and resource depletion \rightarrow need for the transition to a circular economy model (EU Green Deal) \rightarrow waste recovery and conversion into high-added value compounds (volatile fatty acids, VFAs) and energy (biogas, H₂).

- Main waste streams of the urban metabolism: sewage sludge (SS) and food waste (FW)
- In the EU: 13 mln tonn of SS (dry matter)

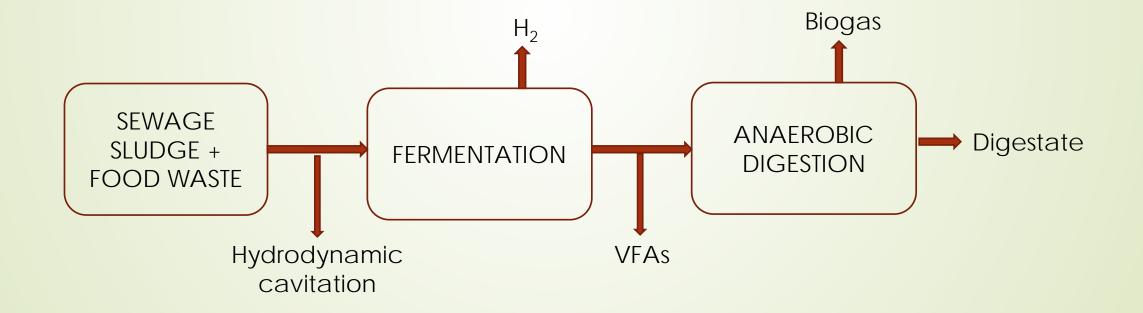
78 mln tonn of FW


Third generation biorefinery:

- Substrate pretreatment (hydrodynamic cavitation)
- > Fermentation process \rightarrow VFAs and H₂

VFAs production

- Aliphatic monocarboxylate compounds C₂-C₇
- Global market: 13 mln tonn/year, 8 mld \$/year
 (market value)
- Various applications in the food, cosmetics, textile, bioenergy, chemical and pharmaceutical industry
- At present, 90% is produced from petrochemical compounds



Chlorella vulgaris. Retrieved from: micropia.nl

Introduction

Aim of the research

Valorisation of the two main waste streams of the urban metabolism, sewage sludge and food waste, by transforming them into high-added value compounds (VFAs) and energy (biogas) through a combined process of fermentation and anaerobic digestion.

Specific targets

Assessment of the disgregation of the substrate (visually and through chemical-physical characterization)

Comparison of VFAs yields in batch tests and semi-continuous operation mode (gCOD_{VFAs}/gVS₍₀₎ and VFAs profile)

Assessment of the biochemical methane potential (BMP)

Green Propulsion Laboratory, Veritas s.p.a.

Materials and methods

Fron 3

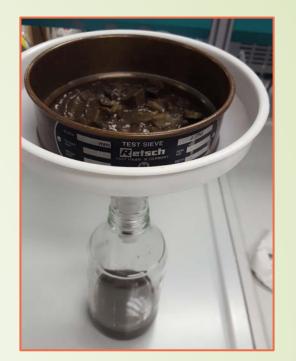
Materials and methods

Cavitation tests

Mixture composition:

70% sewage sludge, 30% food waste (v/v)

First cavitation test


- ► -23% TS, 22% TVS
- ► + 39% sCOD
- > 1,71 ± 0,21 gCOD_{VFAs}/L → 6,80 ± 0,07 gCOD_{VFAs}/L

Second cavitation test

- ➤ -39% TS, -43% TVS
- ► + 43% sCOD
- > 1,78 ± 0,03 gCOD_{VFAs}/L → 4,8 ± 0,04 gCOD_{VFAs}/L

Hydrodynamic cavitator, GP Lab

NOT CAVITATED

CAVITATED

Experimental design- fermentation process

Batch test

Working conditions:

- Mesophilic temperature (37°C)
- CSTR reactors with mechanical stirring (14 rpm)
- ► V= 4 L
- Uncontrolled pH

Parameter	Unit	First batch		Second batch		
		cavitated	not cavitated	cavitated	not cavitated	
Organic loading (OL) tCOD	kg _{tCOD} /m ³	21,4	22,4	33,4	34,8	
Organic loading (OL) VS	kg _{TVS} /m ³	11,9	14,9	18,8	24,5	
Food/microrganisms (F/M) tCOD	kg _{tCOD} /kg _{TVS}	2,86	2,95	9,51	9,92	
Food/microrganisms (F/M) VS	kg _{TVS} /kg _{TVS}	1,59	1,96	5,35	6,98	
Inoculum	volume % on the total	60	60	34	34	

Semi-continuous process

Parameter	Unit	Cavitated	Not cavitated
OLR	kg _{⊤∨s} /m³d	8	8
OLR	kg _{tCOD} /m ³ d	14,2	11,4
HRT	d	5	6,6

Experimental design-BMP tests

Batch tests

Parameter	Unit	Sewage sludge	Vegetable scraps	Cavitated mixture	Not cavitated mixture	Fermentation effluent (cavitated)	Fermentation effluent (not cavitated)	Solid-rich fraction (cavitated)	Solid-rich fraction (not cavitated)
TQ inoculum	L	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
TVS inoculum	g	6,20	6,20	5,20	5,20	6,99	6,99	6,99	6,99
TVS substrate	g/kg _{TQ}	24,44 ± 0,15	82,38 ± 5,22	28,38 ± 0,02	35,46 ± 1,11	12,55 ± 1,00	19,64 ± 1,26	120,49 ± 1,38	106,16 ± 0,30
TQ substrate	g	92,55	27,51	88,26	66,23	199,19	127,29	20,74	23,64
TVS substrate	g	2,26	2,27	2,50	2,35	2,50	2,50	2,50	2,51
F/M_	VS/VS	0 <u>,36</u>	0 <u>,37</u>	<u>0,48</u>	<u>0,4</u> 5	<u>0,3</u> 6	<u>0,36</u>	<u>0,3</u> 6	0,36
F/M	kg _{tCOD} /kgVS			0,85	0,76	0,85	0,74		
<u>OL</u>	kg _{⊤∨s} /m³	4 <u>,52</u>	<u>4,53</u>	<u>5,00</u>	<u>4,7</u> 0	<u>5,00</u>	<u>5,00</u>	<u>5,00</u>	5 <u>,02</u>
OL	kg _{tCOD} /m ³			8,88	7,87	11,84	10,27		

Working conditions:

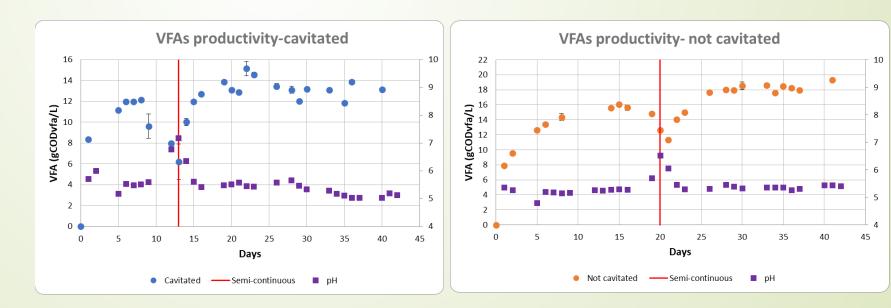
Mesophilic temperature (42°C)

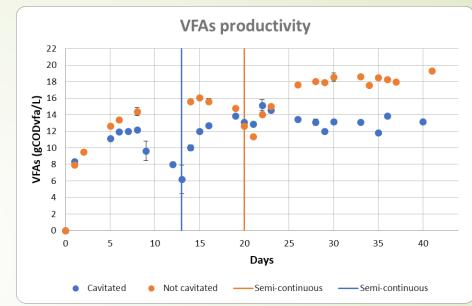
Working volume= 0,5 L > Glass bottles mixed manually

Results

Semi-continuous fermentation process- Yields

▷ [VFAs]_{max}

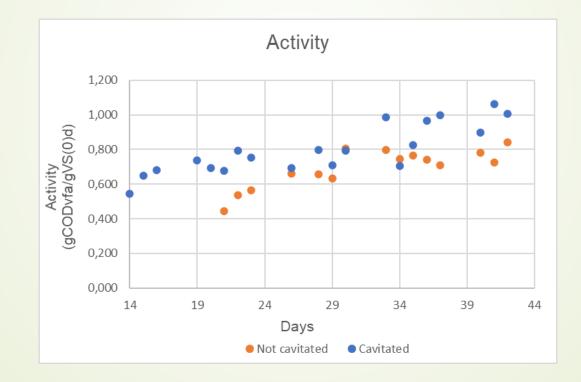

Cavitated: $12,94 \pm 0,63 \text{ gCOD}_{VFAs}/L$, **pH**= 5,508 Not cavitated: $18,23 \pm 0,51 \text{ gCOD}_{VFAs}/L$, **pH**= 5,354


Yields

Cavitated: $0,53 \pm 0,07 \text{ gCOD}_{VFAs}/\text{gVS}_{(0)}$ Not cavitated: $0,52 \pm 0,06 \text{ gCOD}_{VFAs}/\text{gVS}_{(0)}$

Steady state

Cavitated: 3,8 HRT Not cavitated: 2,6 HRT

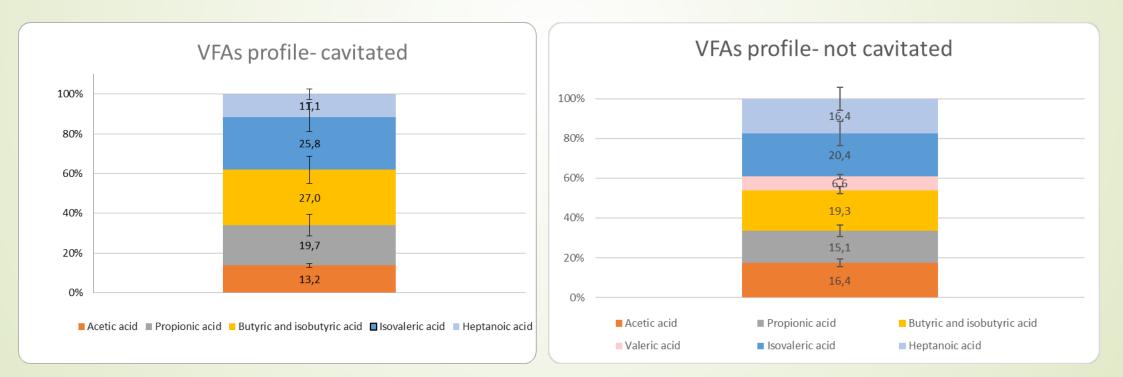


<u>Results</u>

Semi-continuous fermentation process- Activity

Activity

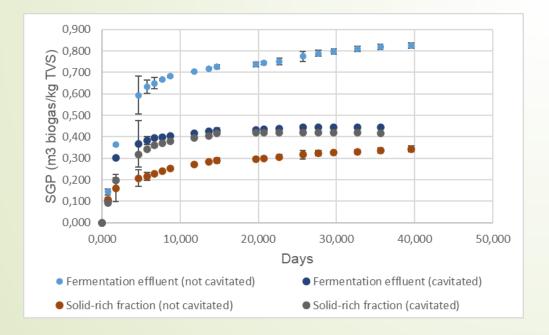
Cavitated: 1,01 ± 0,01 gCOD_{VFAs}/gVS₍₀₎*d \rightarrow +20% Not cavitated: 0,84 ± 0,01 gCOD_{VFAs}/gVS₍₀₎*d

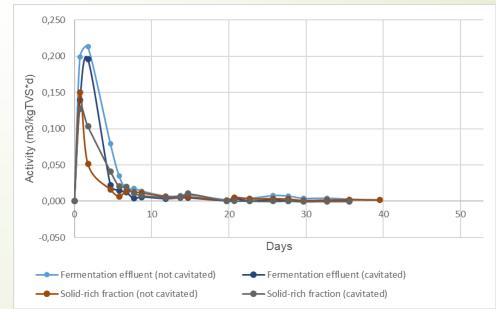


Semi-continuous fermentation process- VFAs profile

► [C₃/(C₃+C₂)]_{VFAs}

Cavitated: 0,53 ± 0,04


Not cavitated: 0,48 ± 0,04



<u>Results</u>

BMP and activity of the fermentation effluent

	Unit	Fermentation effluent (cavitated)	Fermentation effluent (not cavitated)	Solid-rich fraction (cavitated)	Solid-rich fraction (not cavitated)
SGP	m³biogas/kg⊤vs	0,445	0,825	0,418	0,343
SMP	m³CH₄/kg⊤vs	0,267	0,495	0,251	0,206
Confidence		0,001	0,012	0,001	0,014
Test duration	days	36	40	36	40

Conclusions

Hydrodynamic cavitation processes

- Increase of the sCOD, reduction of TS and TVS
- 20% increase of the activity in the semi-continuous fermentation process
 - Stable VFAs production, even with low HRT (3,3 d)

Fermentation processes

- Good yields respect to comparable studies in literature
 - Stable and robust process

BMP tests

Confirm the process feasibility from an energetic point of view

Team

Alice Lanfranchi MSc Environmental Science Collaborator Fondazione Università Ca' Foscari

Graziano Tassinato, PhD R&D Manager Green Propulsion Laboratory (Veritas S.p.A.) Francesco Valentino, PhD Researcher Ca' Foscari University of Venice Cristina Cavinato, PhD Researcher Ca' Foscari University of Venice Thanks for your attention