

8th International Conference on Sustainable Solid Waste Management 23-25 June 2021

Enzymatic production of alcohols by valorisation of volatile fatty acids embedded in anaerobic digestate

Giuseppe Pietricola, Melodj Dosa, Andrea Bergamelli, Carminna Ottone, Debora Fino, Marco Piumetti, Tonia Tommasi

Introduction

Wastewater valorization

- 1. Thermochemical conversion
- 2. Microbial conversion
- 3. Enzymatic conversion

- Renewable Catalysts
- Possibility to operate with environmental P and T
- High selectivity
- Cost
- Stability
- Often dependent on a cofactor

Carboxylic acid reduction

- □ Use of two enzymes in series;
- □ Use of the NADH cofactor as a reducing agent.
- 1. Enzymatic stability
- 2. Reuse of enzymes

Immobilization process

Vidal et al., 2018, BBA - Proteins and Proteomics, 1866, 327-347.

Experimental part

Specific enzyme activity

IU (international activity unit): amount of enzyme necessary to catalyze the transformation of a μ mol of substrate per minute in conditions of:

Concentration of saturating substrate;
 pH = 7;
 T = 30 °C.

For the activity of the free and immobilized enzyme the change in the absorbance of NADH at 340nm is measured, under stirring

Functionalization with amino groups

The

The reaction is carried out in a boiling flask with refrigeration column

Amino groups formations:

APTES 1% v/v in Toluene
 105°C, 5h.

Lazghab et al., 2010, Chemical Engineering Research and Design, 88, 686-692.

Functionalization with glyoxyl groups

Bernal et al., 2012, Journal of Molecular Catalysis B: Enzymatic, 84, 166-172.

Vejayakumaranet et al., 2008, Journal of Colloid and Interface Science, 328, 81–91.

Epoxy groups formation:

GPTMS 1% v/v in Toluene
105°C, 5h.

Hydrolysis of epoxy groups:

- $\Box \quad H_2SO_4 \ 0.1M$
- □ 85°C, 2h

Formation of glyoxyl groups:

T_{amb}, 2h

Immobilization with amino groups

- 1st step reaction:
- Amino functionalized support
- Enzyme
- Phosphate buffer 5 mM pH 7

Formation of ionic bonds between amino groups on the support and enzyme

□4 °C

口3 h

2nd step reaction (after filtration)
Phosphate buffer 25 mM pH 7
Glutaraldehyde 0,1% v/v as linker to stabilize bond
4 °C
30min

Immobilization with glyoxyl groups

1st step reaction
Functionalized support
Enzyme
0.1 M carbonate buffer pH 10
4 °C
3 h

2nd step reaction (without filtration)
NaBH4;
Glycerol.

NaBH₄ as a reducing agent for the formation of the covalent bond, using glycerol as protecting agent

Bernal et al., 2012, Journal of Molecular Catalysis B: Enzymatic, 84, 166-172.

Results

Q3

Q2

Q3

Q4

1,000

Materials characterization

- Physisorption at -196 °C
 - Specific area greater than 500 m²/g, in all cases
 - Average pore diameter ranging from 7 to 25 nm
- ➢ FESEM analysis
 - \Box MSU-H \rightarrow Cylindrical shape
 - □ MSU-F, MCF_{0,75} → Spongylike structure

Sample	S _{BET} (m²/g)	V _p (cm ³ /g)	D _p (nm)
MSU-H	750	0.91	7
MSU-F	562	2.31	15
MCF _{0.75}	600	1.40	25

MSU-H

MSU-F

Immobilized enzyme activity and immobilization yield

- Higher immobilization yields with materials with higher average pore diameter;
- Higher specific activities with materials with smaller average pore diameters;
- □ Enzymatic load: 4mg_{enz}/g_{supp};
- ADH immobilized on amino support;
- AldDH immobilized on glyoxyl support.

Sample	D _p (nm)	IU/g _{supp}	IY (%)
ADH/MSU-H	7	48.6±1.32	82±6.2
ADH/MSU-F	15	12.6±0.89	100±3.1
ADH/MCF _{0.75}	25	3.6±0.53	100±4.2
AldDH/MSU-H	7	1.3±0.37	50±5.1
AldDH/MSU-F	15	1.01±0.45	96±4.6
AldDH/MCF _{0.75}	25	0.97±0.33	100±3.4

AldDH activity:

- □ 1,8 mL phosphate buffer 100 mM;
- □ 0,125 mL propionaldehyde 7,5 mM;
- □ 0,125 mL NAD⁺ 50 mM;
- □ 30°C, pH 7;
- **5** mg of support or 0,025 mg of AldDH.

ADH activity:

- 2 mL ethanol 250 mM in phosphate buffer 100mM;
- □ 0,1 mL NAD⁺ 50 mM;
- □ 30°C, pH 7;
- □ 5 mg of support or 0,005 mg of ADH.

Comparison of thermal stability

Stability tests carried out at 50 °C for soluble enzyme and immobilized enzyme

Deactivation of the first order:

 $E_{nat} \xrightarrow{k_d} E_{den}$

Active enzyme concentration:

Stability factor:

$$A(t) = A_o e^{(-k_d \cdot t)}$$
$$A(t) = A_o [(1 - \alpha)e^{(-k_d \cdot t)} + \alpha]$$

$$F_{S} = \frac{t_{\frac{1}{2},IE}}{t_{\frac{1}{2},FE}}$$

Sample	k _D (h⁻¹)	α (-)	t _{1/2} (h)	F _s (-)	R ²
Free ADH	0.280	-	2.47	-	0.99
ADH/MSU-F	-	-	-	-	-
ADH/MSU-H	0.015	0.3	83.5	33.8	0.95
Free AldDH	0.050	-	13.86	-	0.96
AldDH/MSU-F	0.025	-	27.73	2.0	0.98
AldDH/MSU-H	0.015	-	46.21	3.3	0.98

pH and T profile of AldDH derivates

- Activity variation between soluble and immobilized enzyme, with varying pH and T
- □ No variation of optimal pH
- Good increase in optimal T of AldDH/MSU-F derivates.

20

0

pH and T profile of ADH derivates

Activity variation between soluble and immobilized enzyme, with varying pH and T

There is a slight increase in optimal pH of ADH/MSU-H derivates.

No variation of optimal T

Reduction reaction

1st reaction step: very low conversion, the ATP cofactor is probably also needed.

2nd reaction step: good result obtained with MSU-H; probably with MSU-F the enzyme occludes all the pores and the reagents cannot reach the enzyme site

Sample	Conversion yield			
AldDH/MSU-H	<0.1%			
AldDH/MSU-F	<0.1%			
ADH/MSU-H	14%			
ADH/MSU-F	<0.1%			
Conditions: NADH 50mM; Substrate (propionic acid or				

propionaldehyde) 50mM;

- □ 30°C;
- **D** pH 7.

Reusability test

- Residual activity is measured after several batch reaction
- In both cases, residual activity greater than 20% is observed after 5 cycles

Conclusions

- Good increase in enzymatic stability after immobilization;
- □ Residual activity of 20% after 5 batch reactions;
- Need to use another enzyme, more effective in the first reaction step (e.g. CAR enzyme);
- □ Need to implement cofactor regeneration processes.

Thanks for your attention!

Presenting author: giuseppe.pietricola@polito.it