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1. INTRODUCTION 3. RESULTS 4. CONCLUSIONS/FUTURE WORK2. MATERIALS AND METHODS

CHEMICAL PESTICIDES 

Major drawbacks: 

1. Harmful for the environment(toxicological 
effect).

2. Harmful for humans (mutagenic capabilities). 

3. Resistance induction in pests. 

4. Not host specific. 
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Bacterial
Fungal
Viral
Other: Nematode...

Major fungal biopesticides advantages: 

1. Direct infection by penetration of 
the cuticle (contact pathogens).

2. Direct pathogens of more than 1000 
invertebrate species. 

3. Completely innocuous for humans. 
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Adapted from Mishra et al., 2015

2



Major fungal biopesticides advantages: 

1. Direct infection by penetration of 
the cuticle (contact pathogens).

2. Direct pathogens of more than 1000 
invertebrate species. 

3. Completely innocuous for humans. 

B.Bassiana (BB) T.Harzianum (TH)
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Entomopathogenic fungi, 
pathogenic to more than 
700 host species. 

Antagonistic fungi, 
specially effective against 
soil-borne diseases. 
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SOLID-STATE FERMENTATION (SSF) CONFIGURATIONS

a) Bags.
- Preferred for commercial production. 
- Easy and simple. 
- Less occupied space. 

b) Columns/packed bed reactors (PBB).
- Least used at commercial scale.
- Heat transfer and oxygen limitations due 

to bed thickness.   
- Better forced aeration. 
- Easy to handle and less labour intensive 

when compared to tray.

c) Tray reactors (TB).
- Used for commercial production despite 

required space in comparison to bags.
- Heat transfer and oxygen limitations due 

to bed thickness. 
- Higher time dedication in comparison to 

columns/packed beds. 
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SOLID-STATE FERMENTATION (SSF) CONFIGURATIONS

c) Tray reactors (TB).
- Used for commercial production despite 

required space in comparison to bags.
- Heat transfer and oxygen limitations due 

to bed thickness. 
- Higher time dedication in comparison to 

columns/packed beds. 
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SSF CONFIGURATIONS
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COLUMN/PACKED-BED BIOREACTORS TRAY BIOREACTORS

In both tray designs: 
TRAY 1 – closest to 

the air inlet
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2 TRAY TB 3 TRAY TB

SSF CONFIGURATIONS

4

TRAY BIOREACTORS

In both tray designs: 
TRAY 1 – closest to 

the air inlet
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OPERATIONAL PARAMETERS

O2

Air compressor

Air flow meter

Online data 
acquisition system 

and controller

O2 sensor

ElectrovalveWater bath

0.5L reactor

Humidifier Vapor trap

Sample

Humidified air

Exhaust gases

Supporting net

Specific oxygen consumption rate (sOUR)

Temperature (Tº)

Conidia concentration (conidia g-1dm)

Chitinase concentration (U g-1dm)



1. INTRODUCTION 3. RESULTS 4. CONCLUSIONS/FUTURE WORK2. MATERIALS AND METHODS

5

OPERATIONAL PARAMETERS

O2

Air compressor

Air flow meter

Online data 
acquisition system 

and controller

O2 sensor

ElectrovalveWater bath

0.5L reactor

Humidifier Vapor trap

Sample

Humidified air

Exhaust gases

Supporting net

Specific oxygen consumption rate (sOUR)



1. INTRODUCTION 3. RESULTS 4. CONCLUSIONS/FUTURE WORK2. MATERIALS AND METHODS

5

OPERATIONAL PARAMETERS
Conidia concentration (conidia g-1dm)



1. INTRODUCTION 3. RESULTS 4. CONCLUSIONS/FUTURE WORK2. MATERIALS AND METHODS

5

OPERATIONAL PARAMETERS

Temperature (Tº)



1. INTRODUCTION 3. RESULTS 4. CONCLUSIONS/FUTURE WORK2. MATERIALS AND METHODS

5

OPERATIONAL PARAMETERS

Chitinase concentration (U g-1dm)



1. INTRODUCTION 3. RESULTS 4. CONCLUSIONS/FUTURE WORK2. MATERIALS AND METHODS

6

SUBSTRATES

RICE HUSK (RH) BEER DRAFF (BD)

sOUR (gO2 kg-1dm) 0.6 - 1.2 4.0 - 5.0 2.6 – 3.5

Air filled porosity 
(AFPR) (%) 90 - 95 55 - 60 69 - 72 (70/30)

79 - 82 (40/60)

Total sugar content   
(mg g-1dm) 17.3 – 18.1 114.4 – 131.0 90.0 – 117.0 (70/30)

62.6 – 73.2 (40/60)

BEER DRAFF + 
WOOD CHIPS 

(w/w)

70/30
1.5L PBB

TB

40/60
22L PBB
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- Beer draff performed better than rice 
husk as fungal SSF substrate.

- No significant differences in conidia 
production when comparing with same 
substrate and strain. 

- Best BB production was obtained using 
22L packed-bed bioreactor. 

- Best TH production was obtained using 
tray bioreactor. 

- No significant differences in mean 
temperature were observed between 
substrates and reactors. 

Rice husk reactors
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- Higher chitinase production obtained 
in TH batch. 

- Maximum chitinase production 
achieved after maximum conidia 
productivity when using TH.  

- Conidia production is dependant on 
distance from airflow when working 
with BB, but chitinase production is 
not dependant. 

- Conidia production in independent on 
distance from airflow when working 
with TH, but chitinase production is 
dependant. 
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- Maximum chitinase production 
achieved after maximum conidia 
productivity when using TH.
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- Conidia production is dependant on 
distance from airflow when working 
with BB, but chitinase production is 
not dependant. 
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- Conidia production in independent on 
distance from airflow when working 
with TH, but chitinase production is 
dependant. 
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CONCLUSIONS: 

- Fungal SSF conidia production has been achieved using agro-industrial wastes of different biodegradability. 

- Wastes presenting biodegradability properties similar to beer draff are better as fungal producers than 
wastes similar to rice husk if their AFPR is properly adjusted.

- Promising results shown by PBBs in terms of conidia production and temperature variation when comparing 
to TBs open scaling up possibilities for this configuration.

- Similar chitinase profiles were obtained in both TB strains’ fermentations. Maximum values were achieved 
using TH.   

- Airflow role in conidia and chitinase production is strain dependent.

FUTURE WORK:

- Improvement and scaling up of PBBs using beer draff as substrate, at least up to pilot scale. 

- Obtain more data on chitinase performance in SSF, specially with PBBs but also with TBs.
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