

Universidade Federal do ABC – UFABC Rigaku Latin America - RLA

Academic & Industrial Doctorate Program

PhD: Jenny Sayaka Komatsu Professor: Wagner Alves Carvalho Industrial Supervisor: Pol Willy Gerard de Pape

Fabric Waste Valorisation: a neglected material for application as dye adsorbent and magnetic mesoporous carbon precursor

BRAZIL – São Paulo State – Santo André

Universidade Federal do ABC Science & Technology Bachelor Humanities Science Bachelor Research form Day One (PDPD – Pesquisa Desde o Primeiro Dia) Industrial & Academic Doctorate Program (DAI – Doutorado Acadêmico Industrial)

DAI Program (Industrial Academic Doctorate program)

DAI Doutorado Acadêmico Industrial

Start: 2013 UFABC + CNPq

2021 MAI:Mestrado Acadêmico para Inovação First class in 2021 (now under Selection Process)

DAI – Partner Company

http://dai.ufabc.edu.br/mapa.php

4

Research Context – Why Textile Fabrics ?

YOUR Env

OR

Brazil MSW Generation^a: 259,547 ton.day⁻¹

Latin America^b: 2.6 % (IPCC, 2006) Brazil: 2.5 million ton.year⁻¹

World^c: 32 million ton.year⁻¹

Textile

Reference: a) Brazilian Institute of Geography and Statistics (IBGE) b) IPCC Report 2006, for Latin America c) Shepherd et al (2017)

BRAZIL – Municipal Solid Waste

- Increase on Middle-class Population

- Fast Fashion Phenomena

In last 15 years, clothing production

has doubled

170,000 ton(2) of clean fabric scrap from cloth making

Reference (2) Associação Brasileira da Indústria Têxtil e de Confecção (Abit)

WHY NOT RECYCLE?

UFABC

Traditional Recycling process

require High chemical and procedures demand because of many different fibbers, colours, and other additives (heating, flame retardant, antistatic agent, softener, degreaser, etc)

 Table – Textile Fibber Classification, according to Brazilian Standard ABNT 12744-1992

NATURAL FIBER			CHEMICAL FIBER	
VEGETABLE	ANIMAL	MINERAL	ARTIFICIAL	SYNTHETIC
SEEDS	SECRETION	Asbesto	Acetate	Acrylic
Cotton	Silk		Alginate	Aramid
Kapok	HAIR/FUR		Rubber	Polyester
STALK	Alpaca		Carbon	Polyvinyl Chloride
Нетр	Angora		Casein	Polyvinylidene Chloride
Jute	Goat		Cuprammomium	Elastane (Spandex [®] , Lycra [®])
Kenaf	Cashmere		Slag	Modacrylics
Linen	Camel		Lyocel	Multipolymer
Malva	Rabbit		Metallic	Polyamide
Rami	Sheep (wool)		Metallized	Polycarbamide
LEAF	Lhama		Rock	PolyChloroFluoroethylene
Abaca	Mohair		Triacetate	Polyurethane
Caroá	Vicunha		Glass	Polyvinyl alcohol
Formio			Viscose	
Sisal				
FRUIT				
Coconut				
-	E	200		

Leading With Innovation

Only 1 % in the world

~15,000 colorants type (Ref1)

> 3150 additives listed in Industrial Guide (Ref2)

Ref1 :ZOLLINGER, Heinrich. Color Chemistry - Synthesis, Properties, and Aplications of Organic Dyes and Pigments. Third ed. Zurich: Wiley-VCH and VHCA, 2003.

Ref2: FLICK, E.W. 1980. Textile Finishing Chemicals: An Industrial Guide. Noyes Publication. Nova Jersey, EUA

World Activated Carbon Market

BRAZIL FOREIGN TRADE^b

Year

JFABC

WIDE RANGE OF APPLLICATIONS PROMOTED MAINLY BY ENVIRONMENTAL APPLICATIONS

a) Market and MarketsTM Private Reserch. https://www.marketsandmarkets.com/Market-Reports/activated-carbon-362.html, accessed on 8th October 2020

b) The Observatory of Economic Complexity. https://oec.world/en/profile/hs92/63802/#trade, accessed on 08th October 2020

Leading With Innovation

Polyester/Cotton for Adsorption and MAC characterization

9

ACTIVATED CARBON Conventional Process

Activated Carbon Pore Development

Wood Agro-Industrial Residues

ACTIVATED CARBON Chemical Activation

A NEW PROPOSAL Magnetic Activated Carbon from Textile

impregnation with $Fe(NO_3)_3.9H_2O$ + pyrolysis at 650-800°C, 2h (N₂)

A NEW PROPOSAL Magnetic Activated Carbon from Textile

Alternative for Activated Carbon in Adsoprtion

Dye Destruction after adsorption

Increase C yield in the final AC

NO Effluent

METHOD Iron impregnation & Dye adsorption

METHOD Pyrolysis

Cotton adsorption mechanism - kinetics

Synthetic Dye Solution

FABC

Stock Solution: 5g L⁻¹ Dye + 75 g L⁻¹ NaCl At Use: Dilute to the required concentration Add NaOH for pH=11 Oven 60 °C, 1.5 h (hydrolysis) Dilute 1:1 with water

(A)

C) McKay-Poots intraparticle diffusion model

Multilinear plot \implies two steps occuring during colore removal process Linear Coef $\neq 0 \implies$ intraparticle diffusion is NOT the only rate-controlling step Linear Coef \propto boundary layer thickness.

- indication of the ability of the adsorbents to remove the target pollutant from solution
- also seen as viscous drag which exists between the sorbent surface and solution (B) (C)

Figure 1. Reactive Black Dye Adsorption by White Cotton Fabric+Fe.

(A) Kinetics (starting dye/adsorbent = 50 mg/g), (B) pseudo-second order kinetics model, (C) McKay&Poots model.

Leading With Innovation

Cotton adsorption mechanism - kinetics

Cotton adsorption mechanism – isotherm models

Langmuir:

 R^2 = 0.967 (good Fit) monolayer adsorption mechanism Q_{max} = 31 mg g^{-1}

(A)

Literature reference

for reactive black dye adsorption:

<u>Ferreira (2015)</u>, starting from 8.22 mg L⁻¹ Coal power plant Ash: 5.7 mg_{RB5} g⁻¹, 60 h

<u>Ip et al. (2009)</u>, starting from 2000 mg L⁻¹ Peat 7 mg g⁻¹, Bone char 157 mg g⁻¹ Commercial AC F400 and 176 mg g⁻¹

Figure 2. Reactive Black Dye AdsorptionIsotherms at 40 °C, 2 h contact.(A) WCotFe7 in pH10

Rigaku Leading With Innovation

Cotton adsorption mechanism – isotherm models (2)

(B) Pure Cotton in pH 2.5

20

100

1) HNO_3 from $Fe(NO_3)_3.9H_2O$ reducing pH to PZC of Cotton

 $Fe(NO_3)_3.9H_2O \rightarrow Fe(OH)(NO_3)_2.H_2O + 7H_2O(g) + HNO_3$

During fabric/Fe drying at 60 \sim 70 °C (HNO₃ boiling point: 88 °C)

 $Fe(OH)(NO_3)_2.H_2O \rightarrow Fe(OH)_3 + 2HNO_3$

During fabric/Fe pouring into the dye solution

Color removal mechanism – theory (2)

2) Fe(OH)₃ forming (+) aquocomplex agglomerating (-) dyes

$$\begin{split} & \operatorname{Fe}^{3+} + 6\operatorname{H}_2\operatorname{O} \longrightarrow [\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_6]^{3+} \\ & [\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_6]^{3+} + \operatorname{H}_2\operatorname{O} \leftrightarrows [\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_5(\operatorname{OH})]^{2+} + \operatorname{H}_3\operatorname{O}^+ \\ & [\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_5(\operatorname{OH})]^{2+} + 6\operatorname{H}_2\operatorname{O} \leftrightarrows [\operatorname{Fe}(\operatorname{H}_2\operatorname{O})_4(\operatorname{OH})_2]^{1+} + \operatorname{H}_3\operatorname{O}^+ \end{split}$$

Leading With Innovation

$Fe(OH)]^{2+}$	Bi-nuclear ions
Fe(OH)] ⁺	$[Fe_2(H_2O)_8(OH)_2]^{4+}$
$Fe(OH)_3]^0$	$[Fe_2(OH]_2)^{4+}$
Fe(OH) ₄] ⁻	

(adapted from Lima, Abreu, 2018 and Bratby, 2006)

Color removal mechanism - theory

SEM images from Powder in Solution after adsorption

MAC from Dye adsorbed fabrics – Surface Pore Area (S_{BET})

Select only Fe7 2 w/o Dye and 2 wDye For more detailed properties

 Average $S_{BET}(m^2 g^{-1})$ All: 422 ±88 w/oDye: 361 ±80 wDye: 483 ±40

MAC – 4 selected Properties

Conclusion

ADVANTEGES:

- Applicable in a wide pH range 3-12.
 Different from others that often requires acidic condition
- Easy separation of the adsorbent AFTER use As they are in fabric form, not in Powder
- Specific for negative charged pollutants
- Spent adsorbent and organic pollutants are destroyed during pyrolysis
- Fe component become metallic Fe instead of FexOy, with higher magnetization capacity as well as higher conductivity for eletrocatalysis applications
- New Income for the recycling agents in developing countries as Brazil.

28

TEAM

ITIGO ITIE 一切一会 OreMonert OreMeeting

Beatriz Mianni UnderGrad

Maria Vitória UnderGrad

Academic Supervisor Prof Dr Wagner Carvalho

(Former) Industrial Supervisor Dr. Akihiko Iwata

Rigaku Leading With Innovation

Industrial Supervisor Pol de Pape

Sustainable Technology Nucleus (NuTS) Catalysis and Organic Sysnthesys Group (GCaso)

THANK YOU FOR YOUR ATTENTION

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Jenny Sayaka Komatsu UFABC – Campus Santo André jenny.komatsu@gmail.com

Sustainable Technologies Nucleus

Related ODS

Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all

Target 8.2: Achieve higher levels of economic productivity through diversification, technological upgrading and innovation, including through a **focus on high-value added and labour-intensive sectors**

Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation

Target: 9.2 Promote inclusive and **sustainable industrialization** 9.5 Enhance scientific research, upgrade the technological capabilities of industrial sectors in all countries, in particular developing countries, including, by 2030, encouraging innovation and substantially **increasing the number of research and development workers** per 1 million people and public and private research and development spending

Related ODS

Make cities and human settlements inclusive, safe, resilient and sustainable

Target: 11.6 Reduce the adverse per capita environmental impact of cities, including by paying special attention to air quality and municipal and other waste management.

Indicator:

11.6.1

Proportion of urban solid waste regularly collected and with adequate final discharge out of total urban solid waste generated, by cities

11.6.2

Annual mean levels of fine particulate matter (e.g. PM2.5 and PM10) in cities (population weighted)

Related ODS

Ensure sustainable consumption and production patterns

12.5 By 2030, substantially **reduce waste generation** through prevention, reduction, **recycling and reuse**

Take urgent action to combat climate change and its impacts*

13.3 **Improve** education, awareness-raising and human and **institutional capacity on climate change mitigation**, adaptation, impact reduction and early warning

Conserve and sustainably use the oceans, seas and marine resources for sustainable development

14.1 By 2025, prevent and significantly reduce marine pollution of all kinds, in particular **from land-based activities**, including marine debris and **nutrient pollution**

Reactive Black Dye RB5, chemical structure

Reactive Black Dye 5: C₂₆H₂₁N₅Na₄O₁₉S₆ FW:991.816116

Open structure: 3.3 nm x 1.2 nm

Figure S2. (a) Structural formula of RB5 and pKa values of each acidic group (b) optimized three-dimensional structural formula of RB5, by ACD/ChemSketch software

Iron hydroxide complex

ົບ UFABC

Figure. UV-visible absorption spectra of Fe(III) complexes in aqueous solutions. Fe 3+ corresponds to the hexa-aquo complex (ferric ion),

Ref.: Loures, Carla C.A. et al. International Review of Chemical Engineering (I.RE.CH.E.), Vol. 5, N. 2

Leading With Innovation

Rigaku

Estabilidade térmica do carvão, sob O₂

(apresentação DAI 2018)

Umidade: 0,48% volatéis: 62,84% Cinzas: 36,68% Comparando com carvão sem Fe, diferença de cinzas: +32,9%. Se tudo Fe2O3, então carvão possui 23% Fe (pelo XRF: 12,8%) Máxima temperatura para uso: 400°C (antes da degradação) Temperatura de auto-ignição: 556°C (sem Fe: 468°C)

AC activated by ZnCl₂ x Fe(NO₃)₃

Activating Agent	Fe(NO ₃) ₃ 9H ₂ O		ZnCl ₂		
Nomenclature	C_FWC +Fe(0.07)	C_FWC +Fe(0.07)+BL2h	C_FWC +Zn(0.5)	C_FWC +Zn(1)	
BET area (m ² .g ⁻¹)	183	417	1,543	1,404	
Total Pore Volume (cm ³ .g ⁻¹)	0.162	0.287	0.674	0.814	
Micropore Volume (cm ³ .g ⁻¹)	0.040	0.158	0.559	0.504	
Mesopore Volume (cm ³ .g ⁻¹)	0.122	0.129	0.115	0.310	
% Micropore	43 %	55%	83 %	62 %	
Hardness / Visual Aspect	Soft and malleable fabric AC. Easy to handle, as a fabric. Possible to cut with scissors, although being very fragile, turning to powder very easily.		Very Hard. -Not possible to handle as fabricKeeps little fiber aspect -Require maceration to make handling possible.	Do not keep fiber aspect, which is completely destroyed	
Other observation	Magnetic specie: Fe ₃ C Ms: 7.2 emu.g ⁻¹	Magnetic specie: Fe0 Dye solution prepared only by dissolving in distilled water.	Mass loss during handling, due to its hardne and low density High mass loss due to repeated cycles of acic water washing/filtering		

Leading With Innovation

Rigaku

Q

SUFABC

SEM – C_F+Fe(11)+BL

Fe quantification - ICP x WDXRF

	Sample	AC_Fe0.07	AC_Fe0.14	AC_Fe0.07+Dy e	AC_Fe0.14+D ye
Figure 33	Theoretical	18.4	27.4	< 14.2	< 24.8
WDXRF UILFACATTY® X ICP	ICP	36.4	74.4	33.1	61.5
	WDXRF Solid Phase	11.7	n.a.	12.7	n.a.
	WDXRF Liquid Cell	17.7	27.0	14.7	31.0
0 5 10 15 20 25 Ultracarry (Fe%)	WDXRF UltraCarry®	11.1	22.6	10.4	20.5
	SEM-EDS	3.0	4.3	3.2	12.0
	XPS	2.9	n.a.	1.47	n.a.

n.a.: not analyzed

MAC WhiteCotton.Fe7 – Magnetic properties

MAC – XPS difference between Fe_3O_4 and αFe MAC

42

TG under N₂ for Polyester/Elastane fabric

43

Polyester mixed fabrics – adsorption capacity comparision

Experimental Conditions:

50 mg L⁻¹ synthetic Dye (NaCl pH~10)

1g Fabric to 100 mL solution

40 °C, 2h

Fabrics:

Polyester Poyester/Cotton 50% Cotton Polyester/Elastane 3%

White and Red Fe: 0.07 g g^{-1}_{Fabric} and 0.014g g^{-1}_{Fabric}

Elastane fiber

(A) (B) Elastane core soft rubbery segment rigid segment Yarn wrap $\begin{array}{c} & \circ \\ -\overset{}{\operatorname{C}} - \overset{}{\operatorname{N}} - \overset{}{\operatorname{N}} - \overset{}{\operatorname{C}} - \overset{}{\operatorname{N}} - \overset{}{\operatorname{C}} - \overset{}{\operatorname{N}} - \overset{}{\operatorname{H}} \\ & \overset{}{\operatorname{H}} \overset{}{\operatorname{H}} \overset{}{\operatorname{H}} \end{array}$ O −N−C ⊢H 0 -CH,-। Н (C) x = about 40 or so-H bond Spandex has a complicated structure, with both Silicone oil coated Elastane fiber urea and urethane linkages in the backbone chain. ÇH₃ CH₃ -OH HO-CH3 ĊH3 ĊНз 'n

Η

-CH, -

Polyester mixed fabrics – adsorption capacity comparision

■TOC@Fe7 ■Fe7 NFe14 100% 80% Removal 60% 40% 20% 0% W R R W R W R W Poly Cotton Poly/Elast Poly/Cot

Experimental Conditions:

50 mg L⁻¹ synthetic Dye (NaCl pH~10)

1g Fabric to 100 mL solution

40 °C, 2h

Fabrics:

Polyester Poyester/Cotton 50% Cotton Polyester/Elastane 3%

White and Red Fe: 0.07 g g^{-1}_{Fabric} and 0.014g g^{-1}_{Fabric}

Fabric Pictures – before and after adsorption

SupFig 2. WCotton pictures before (let) and after (rigth) dye adsorption (A) Fe007 in pH10, (B) Fe014 in pH10, (C) Pure Cotton in pH 2.5

