

8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT 2021

A. Mokhati¹, O. Benturki¹, M. Bernardo², Z. Kecira¹, I. Matos², I.Fonseca²

 ¹Laboratory of Physical and Chemical Study of Materials and Applications in the Environment Faculty of Chemistry, University of Sciences and Technology Houari Boumedien, Algiers, Alia, 16111, Algeria
 ²LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Assessment of argan shell wastes as precursors of nanoporous carbon materials

Presented by Asma Mokhati

Conclusion Introduction **Experimentation Results and discussion** Linoleic acid Vitamin Omega-6

- ✓ Therapeutic medicine,
- \checkmark cosmetic,
- ✓ culinary..etc

Experimentation

Results and discussion

Conclusion

Figure 2: Surface analyzer ASAP 2010.

Optimum carbon characterization

Elemental analyses

* Ash and pH_{PZC}

SEM, FTIR, and TGA

Figure 3: Comparison graphic to evaluate the effect of various activation conditions on the specific surface area of ACs

Experimentation

Results and discussion

Conclusion

Impregnation ratio 1-2 char/KOH (w/w)

Carbonization temperature 800 °C

Holding time 1 hour

Table 1: Results of elemental analysis, ash contents and pH_{PZC} of biomass and ACK

	ANS	АСК	
C (wt.%)	47.84	69.86	
H (wt.%)	6.54	1.74	
N (wt.%)	0.33	0.39	
S (wt.%)	<0.03	0.2	
O* (wt.%)	45.20	26.86	
Ashes	0.065	0.95	
pHPZC	n.d	7,04	

n.d. - not determined

Figure 4: ACK characterizations

Experimentation

Results and discussion

Conclusion

Adsorption studies

> DCF preparation

UV-Vis at 274 nm

$$q_t = \frac{(C_0 - C_f) \times V}{m}$$

Experimentation

Results and discussion

Conclusion

Adsorption studies

Kinetic models:

PFO
$$q_t = q_e \times (1 - e^{-k_1 \times t})$$

PSO $q_t = \frac{q_e^2 \times k_2 \times t}{1 + (k_2 \times q_e \times t)}$

Isotherm models:

Langmuir $q_e = \frac{q_m K_L C_e}{1+K_L C_e}$ Freundlich $q_e = K_F C e^{1/n}$ Sips $q_e = \frac{q_{ms} K_s (C_e)^{n_s}}{1+K_s (C_e)^{n_s}}$

Experimentation

Results and discussion

Conclusion

Table 2: Kinetic parameters obtained

Figure 5: Kinetic data of DCF onto ACK.

Kinetic parameters	
Pseudo-first order	
R ²	0.972
q _e (mg g⁻¹)	171
k₁ (min⁻¹)	0.095
Pseudo-second orde	r
R ²	0.986
qe (mg g ⁻¹)	175
k ₂ (g mg ⁻¹ min ⁻¹)	0.0009

Figure 6: Adsorption isotherms of DCF onto ACK carbon

Table 3: . Estimated parameter values of models for adsorption experimental data of DCF onto ACK.

Langmuir		Freundlich		Sips					
$\mathbf{q}_{\mathbf{m}}$	K	\mathbf{R}^2	K _F	n	R ²	\mathbf{q}_{m}	Ks	n _s	\mathbf{R}^2
217	0.2	0.964	82.5	5	0.842	217	0.01	0.5	0.964

Conclusion

Table 4: DCF maximum adsorption capacities of several biomass derived ACs

Adsorbate	Biomass precursor	S _{BET} (m ² g ⁻¹)	q _m (mg g⁻¹)	Reference	
DCF	Argan nut shell	1624	217	This work	
	Potato peel waste	866	68.5	(Bernardo et al. 2016)	
	Loblolly pine chip	1151 - 1360	214 - 372	(Jung et al. 2015)	
	Olive waste cake	793	56.2	(Baccar et al. 2012)	
	Pine and Onopordum acanthium L. sawdust	796	257	(Álvarez-Torrellas et al. 2016)	
	Pine sawdust	176	123	(Thi Minh Tam et al. 2019)	
	Orange peels	184 - 457	5.61 - 144	(Tomul et al. 2019)	
	Tea waste	416 - 865	74.6 – 91.2	(Malhotra, Suresh, and Garg 2018)	
	Knotweed plants	140 - 475	17.7 – 86.8	(Koutník, Vráblová, and Bednárek 2020)	
	Sucrose	375 - 753	70 - 207	(Moral-Rodríguez et al. 2019)	

 This work does not only open a new way to valorize argan nut shells but also presents a simple and sustainable approach to synthesize nanoporous carbon materials.

 Argan nutshell-derived carbon presented high uptake capacity for Diclofenac, compared with other porous carbons found in the literature.

your attention