Valorization of unused chokeberries: encapsulation and storage stability of their phenolic extract

P. Tzatsi, P.A. Petraki, I. Tsitsiplamis, A.M. Goula

Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, Thessaloniki, Greece

Chokeberry

- Aronia is a member of the Rosaceae family
- Two species can be distinguished:
 - ✓ Aronia melanocarpa (black chokeberry)
 - ✓ Aronia arbutifolia (red chokeberry)

- Antioxidant activity
- Anti-bacterial activity
- Anti-hypertension activity
- Anti-inflammatory activity
- Anti-atherosclerotic activity

Composition-polyphenol content of chokeberry

Component	Content
Total solids	15.60-28.80%
Total sugars	66-176 g/kg FW
Crude fibers	56 g/kg FW
Pectin	3.4–5.8 g/kg FW
Fat	0.14% FW
Protein	0.7% FW

FW: Fresh weight DW: Dry weight

Phytochemicals	Content	
Carotenoids	48.6 mg/kg FW	
β-carotene	7.70-16.70 mg/kg FW	
β-cryptoxanthin	4.63-12.20 mg/kg FW	
Total phenolic	7.465 mg/100 g DW	
Amygdalin	201 mg/kg FW	

Vitamins	Content (per kg FW)			
Vitamin C	137 mg			
Vitamin B1	180 µg			
Vitamin B2	200 µg			
Vitamin B6	280 µg			
Niacinamide (B ₃)	3000 μg			
Pantothenic acid (B ₅)	2790 μg			
Tocopherols	17.1 mg			
Vitamin K	242 μg			
Trace ele	ements			
Na	26 mg			
К	2180 mg			
Са	322 mg			
Mg	162 mg			
Fe	9.30 mg			
Zn	1.47 mg			

Kulling & Rawel, 2008

Why encapsulation of phenolic compounds

Polyphenols

Encapsulation with spray drying

Applications of spray drying

Polyphenols source	Wall material	References
Extra virgin olive oil	maltodextrin, gum arabic, or sodium caseinate	Calvo et al., 2010
Procyanidins of grape seed	maltodextrin and gum arabic	Zhang et al., 2007
Extract of olive leaves	chitozan	Kosaraju et al., 2006
Extract of soybean	maltodextrin, starch or silicon dioxide (Tixosil 333)	Georghetti et al., 2008
Extract of apples	sodium caseinate, lecithin	Kosaraju et al., 2008
Extract of oats	sodium caseinate, lactose	Rocha-Guzman et al., 2010
Pomegranate juice	maltodextrin, soy proteins isolated (SPI)	Robert et al., 2010
Bilberry juice	cyclodextrins	Wilkowska et al., 2016
Extract of black carrot	maltodextrin	Ersus & Yurdagel, 2007
Extract Hibiscus sabdariffa L.	citrus fibers	Chiou & Langrish, 2007

Encapsulation with co-crystallization

- It is based on the inclusion of extract between sucrose crystals that has been modified from a perfect to an irregularly agglomerated crystal
- > Creation of a porous mesh and inclusion of a second active ingredient
- > Applications:

Polyphenols	Wall material	References
Extract of Yerba mate	Sucrose	Deladino et al., 2007
Cocrystallization	Sugar crystals Polyphenols	e Pharmaceutical Ingredient + Cocrystallization + Coformer Cocrystal C

Encapsulation with extrusion

- Consists of b-D-mannuronic acid (M) and a-L-guluronic acid (G), linked by 1-4 bonds
- Based on the method of extruding an alginate in solution with Ca⁺² cross-linking
- Egg-box mechanism: binding of 4 guluronic acid (G) residues to two different chains and a cation
- Ca⁺² binds within the two opposite helical folds of guluronic acid

Applications of extrusion

Phenolic extract	Wall material	References
Extract of dandelion leaves	Alginate, alginate-whey proteins, alginate cocoa or carob powder	Bušić et al., 2018
Extract of stevia leaves	Calcium alginate	Arriola et al., 2016
Extract of chokeberry leaves	Alginate, alginate inulin	Ćujić et al., 2016
Extract of Clitoria ternatea	Sodium alginate	Pasukamonset et al., 2016
Extract of pomegranate peels	Calcium alginate	Zam et al., 2014

Objective

The valorization of chokeberry wastes based on:

- Encapsulation of extract by spray drying using maltodextrin, skim milk powder and whey protein concentrate as wall material
- Encapsulation of extract by co-crystallization using sucrose as wall material
- > Encapsulation of extract by extrusion using calcium-alginate as wall material

***Optimization**:

Encapsulation by spray drying, co-crystallization and extrusion of phenolic compounds

Study of:

- 1. Encapsulation efficiency
- 2. Physical properties of microcapsules (moisture content, bulk density, solubility, hygroscopicity, color, size, texture, isotherms, release rate)
- 3. Storage stability of microcapsules

Materials & Methods

Proposed process based on spray drying

Proposed process based on co-crystallization

Proposed process based on extrusion

Experimental design for optimization of spray drying encapsulation

Response Surface Methodology: 20 experiments x 2 wall materials

Parameters	Levels				
Ratio of wall to core material (w/c)	2.3	3.7	5.6	7.3	1/9
Inlet air temperature (T _i , °C)	150	158	170	182	190
Drying air flow rate (Q _a %)	50	53	57.5	62	65

Wall material:

- Maltodextrin/SMP: 50/50
- Maltodextrin/WPC: 50/50

- *SMP: Skim milk powder*
- WPC: Whey protein concentrate

Experimental design for optimization of co-crystallization encapsulation

Response Surface Methodology: 13 experiments

Parameters	Levels				
Extract concentration (Brix ^o)	35	40	52.5	65	70
Solids/sucrose (g/g)	0.1	0.19	0.4	0.61	0.7

Experimental design for optimization of extrusion encapsulation

Response Surface Methodology: 20 experiments

Parameters	Levels				
CaCl ₂ concentration (% w/v)	1	1.30	1.75	2.19	2.5
Alginates concentration (% w/v)	2	2.4	3	3.59	4
Extract concentration (% v/v)	0.5	4.44	10.25	16.05	20

Efficiency of co-crystallization & extrusion

E

Phenolics of crystallized powder Total phenolics of concentrated extract) *100

$$E_f = \left(\frac{\text{Phenolics on beads}}{\text{Total phenolics of concentrated extract}}\right) *100$$

Efficiency and Yield of spray drying

 $E_{f} = (1 - \frac{P}{2})$

Phenolics on microcapsule surface Total phenolics of microcapsule) * 100

$$C = \frac{\text{Mass of microcapsules (g)}}{\text{Total mass of initial substances (g)}} * 100$$

Characterization of encapsulated extract

Results

Co-crystallization Average efficiency values

E/S: Extract/Solids

Encapsulated powder properties Contour plots: Moisture content & Hygroscopicity

Xs: Extract concentration E/S: Extract/Solids

65-60-55 -×s 50 -45-40-35 -0,4 0,6 0,7 0,2 0.3 0.5 0.1 E/S Maximum hygroscopicity: ✓ Xs: 53^o Brix <5.00 g H₂O/g ✓ E/S: 0.1 g/g

70 -

Extrusion Average efficiency values

Ce: Extract concentration Calg: Alginate concentration

Encapsulated beads properties Surface plots: Beads size

Ce: Extract concentration Calg: Alginate concentration BT: Beads thickness

0.404-0.489mm

Spray drying Contour plots

- > wall/core-T^oC
- ➢ T⁰C-Qa
- > wall/core-Qa

Spray drying Contour plots ➤ wall/core-T^oC

- ≻ T^oC-Qa
- wall/core-Qa

Spray drying **Average efficiency values**

* A: MD/WPI ✤ B: MD/SMP

в

Qa

Spray drying Average yield values

♦ A: MD/WPI♦ B: MD/SMP

Spray drying Average yield values

♦ A: MD/WPI♦ B: MD/SMP

Optimization

Spray drying				
Ratio of wall to core material (w/c, g/g)	9			
Inlet air temperature (T, °C)	190			
Drying air flow rate (<i>Qa,</i> % ή m³/h)	55 ή 19.25			
Wall material	Maltodextrin: skimm milk			
Co-crysta	Ilization			
Solid extract concentration (Xs, Brix)	35			
Ratio of dry extract/sucrose (E/S, g/g)	0.7			
Extru	sion			
Sodium alginate solution concentration (<i>Calg</i> , % w/w)	2.0			
Sodium alginate solution concentration (<i>CCaCl₂</i> , % w/v)	2.5			
Extract concentration (<i>Ce</i> , % w/w)	20.0			
a: Spray drying b: Co-crystallization c: Extrusion				

Properties of encapsulated extract at optimal conditions

Parameters	Spray drying	Co-crystallization	Extrusion	<u>SEM:</u>
Moisture content (% wet basis)	5.27 ± 0.22	5.15 ± 0.18	96.52 ± 0.41	a: Crystallized sucrose b: Co-crystallization
Total phenolic content (mg GAE/g powder)	5.204 ± 0.092	0.194 ± 0.003	0.208 ± 0.04	c: Spray drying d: Extrusion
Antioxidant capacity (DPPH, %)	74.20 ± 1.31	85.22 ± 1.91	93.14 ± 1.98	
Bulk density (g/mL)	0.541 ± 0.027	0.745 ± 0.012	-	a start b
Solubility (s)	75 ± 3	136 ± 5	-	The second second second
Hygroscopicity (%)	$\textbf{2.832} \pm \textbf{0.110}$	0.093 ± 0.003	-	
Beads size(mm)	-	-	0.482 ± 0.003	
Beads texture hardness (g)	-	-	54 ± 3	X1,000 10,000
Stickiness (g)	-	-	-3 ± 0.7	
Color				c d C
Parameters <i>a</i> *	$\textbf{8.61}\pm\textbf{0.32}$	9.44 ± 0.10	11.37 ± 0.16	
b*	5.40 ± 0.22	6.39 ± 0.20	2.19 ± 0.11	
L*	73.65 ± 1.59	$\overline{\textbf{63.58}\pm\textbf{0.49}}$	22.75 ± 0.16	

Sorption isotherms Controlled release rate

Ficks law of diffusion:

 M_{t}

Storage stability

5°C for 30 days

Conclusions

Optimization of encapsulation with three methods:

Spray drying-Optimum conditions

 Ratio of wall to core material: 9/1, Inlet air temperature: 190 °C, Drying air flow rate : 55%, Maltodextrin: skim milk powder (50:50) as encapsulating agent

Co-crystallization-Optimum conditions

• Xs=35 ^oBrix και E/S=0.7 g/g

Extrusion-Optimum conditions

• C_{CaCl2}=2.50%, C_{alg}=2.00%, C_e=20.00%

Characterization of encapsulated extract

- The spray dried products presented better total phenolic content stability, but lower radical scavenging activity as compared to the other products.
- The drawbacks of stickiness and hygroscopicity of spray dried extract had been overcome by the co-crystallization.
- The spray dried extract and the alginate beads had higher equilibrium moisture content levels compared to those of the co-crystallized product, which was stable to relative humidities below 88%.

Thank you!