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Phenolic compounds
S econdary metabolites
P rovide health benefits  and bas ic nutrition
Antioxidant, antimutagenic, antifungal, and antimicrobial 
properties
Obtained through modification of s tandard processes  or 
addition of compounds  with bioactive properties
Attempts  to enrich food products  with phenolic 
compounds



Appropriate for formulating new products as it:

It is ,  essentially, the placement of a raw material into a concentrated solution of soluble solids  
with higher osmotic pressure and lower water activity, that, due to osmosis , impels  water to 
move through the selective permeable membrane, out of the product, and, at the same time, 
solutes  move from the osmotic solution into the food material.

Osmotic treatment

P artially removes  water
Impregnates  the product with solutes  from the osmotic solution

Water

S olutes



Low rate of mass transfer 
during osmotic dehydration

S everal methods  used to enhance the speed of the procedure:
High pressure
P artial vacuum
C entrifugal force
P ulsed electrical field
Ultras ounds :
A combination of ultrasounds  and osmotic dehydration leads  to the 
formation of microscopic channels  in the intercellular tissue of the 
treated products  due to the cavitation effect that takes  place and it 
also generates  agitation effects  into the osmotic solution. T hus , it 
enhances  mass  transfer rate, without damaging the final product.



Chokeberry (Aronia melanocarpa)
One of the richest plant sources  of phenolic compounds  (1494-5292 
mg/100g):

Anthocyanins  (141-2468 mg/100g) found in aronia are mainly derrivatives  of 
of cyanidin of which the most abundant are cyanidin-3- galactos ide (68.9%) 
and cyanidin-3-arabinos ide (24.5%)
F lavonols  of which querqetin is  the most abudant with 93.07% in total 
flavonol amount

Aronia's  phenolic extracts  are mainly used in the development of high 
nutritional value foods , such as :

S upplementing confections
F ruit fillings
S auces
B everages
P asta products

No reports of us ing them to infuse fresh solid foodstuff



Potatoes
F ourth most important food crop in the world
Osmotically dehydrated potato can be used as  a 
quick-cooking product

Offers  a chance for a func tional s nac k that could 
increase the c ons umption of phenol ric h produc t.

F ood industry is  looking for a way to make 
healthier snacks  with functional and antioxidant 
prorerties



Objective

To study

T he rate of phenolics  infus ion 
into potato cubes  during 
osmotic dehydration

To estimate

T he diffus ion coefficients  of 
water, solute, and phenolics  
during osmotic treatments

To evaluate

T he poss ible enhancement of 
mass  transfer due to 
ultrasounds  application



Materials & methods



P otatoes :
Washed and handpeeled
C ut in 14mm s ide cubes

Maltodextrin:
12 Dextrose E quivalent 

A ronia berries :
Dried at 40 °C  for 48h to a 9.5 ± 0.5 % moisture content
G rounded (0.4 mm diameter particles ) in a laboratory 

grinder

R aw materials

S odium c hloride



Phenolic extract
Multiwave closed microwave system equipped with 
6 sample vessels
50% aqueous  ethanol solvent at a 24/1 mL/g ratio
At microwave power of 400 W for 7 min.
E xtraction yield of 32.5 G AE /g of dry aronia

E vaporated under 150 mbar vacuum at 40 ºC  
us ing a rotary evaporator

Until 30% s olid c ontent.



Osmotic dehydration experiments
T (20-45ºC )
C t (15-30%)
C NaC l (0-12%)
A (20-60%)
Total of 31 experiments .

Water Loss  (WL)
S olid G ain (S G )
P henolics  G ain (P G )



Calculations
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Mass  and moisture and phenolic content data were used to calculate water loss  (WL), solid 
gain (SG), and phenolics gain (PG) of the samples, according to the equations:



Mathematical modeling
According to F ick’s  second law of diffus ion:
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To determine effective diffus ivities :
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Microstructure analysis
S E M S ystem (Quanta-200)

P otatoes  samples : dried, mounted on aluminium
stubs  with conductive adhes ive and coated with 
gold

x100 magnification

S tatistical analysis
Minitab
ANOVA
p less  than 0.05 was  statis tically s ignificant

T M



Results



Water Loss

During the firs t hour of osmotic dehydration, the 
rate of increase in moisture loss  is  higher due to 
the difference in osmotic pressure between the 
sample and the surrounding hypertonic osmotic 
solution
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Decrease in maltodextrin concentration causes a decrease 
in moisture loss.
T he observed decrease in water loss  may be related to 
the decrease in maltodextrin concentration and not to the 
increase in NaC l concentration.



Using ultrasound 
power

E ffect of ultrasound on water loss

Using stirring

60 min. 300 min.
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Regression Analysis for Water Loss

S tatis tically s ignificant parameters : 

p<0.05



The rate of solids intake is lower than the rate of moisture loss
In some experiments , an initial loss  of solids  from the sample 
to the solution is  observed, which over time is  converted to 
solids  uptake, but is  at very low levels .
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Maximum percentage of phenolic intake =103,1%
Maximun concentration of phenolics  =1,34 mg/g
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Mathematical modeling

T he s implified method gives  values  that are s ignificantly 
different and, in particular, higher than the analytic al 
method.



Increase of the total solids concentration was shown 
to favor the uptake of phenolic substances  in potato 
samples , with an optimal concentration of 22.50%
An intens ity of 40% s ignificantly helped to enrich the 
potato cubes  with phenolic components

20 ˚C  & 45˚C  had a negative impact on the 
uptake of phenolic compounds  in the food 
matrix

Diffus ion C oefficient for P henolic G ain

T he sodium chloride concentration did not 
appear to affect to the same extent as  the 
other factors  the uptake of phenolic 
compounds  into potato cubes

-



Comparison of simplified and analytical solution



Comparison of V constant and V variable hypothes is

Moisture S olids P henolics



Conclusions



Osmotic treatment was proved to be a feasible method to incorporate phenolic compounds in potato cubes without 
altering their s tructure.

T he mass  transfer rate for solids  gain is  s lower than that of water loss  because of the res is tant characteris tic of cell 
wall and the higher molecular weight of solute.
T he factors  of temperature, total solids  concentration of the osmotic solution, and intens ity of ultrasounds  had a 
s ignificant effect.

Temperature = 32,5 ˚C
Osmotic solution concentration = 22,5 % 
w/w
C NaC l  = 6 % w/w
Amplitude level = 40%

Total phenolic content s imilar to that of the 
richest fruits , about 1.34 mg/g

T he values  of diffus ion coefficients  are lower when volume change is  cons idered in their estimation.

C onclus ions



Thank you for your attention
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