

8th International Conference on

Sustainable Solid Waste Management

Catalytic abatement of volatile organic compounds and carbon soot over manganese oxide catalysts

Miguel Marin-Figueredo, Clarissa Cocuzza, Samir Bensaid,

Debora Fino, Marco Piumetti*, Nunzio Russo

Summary

Synthesis procedures

Physico-chemical characterization of powder catalysts:

X-ray powder diffraction Specific surface area Field-emission scanning electron microscope H_2 -TPR and soot-TPR X-ray photoelectron spectroscopy

Scheme 1. Representation of the catalytic oxidation of VOCs toward CO₂ and H₂O

Catalytic abatement tests

VOCs: ethene and propene Carbonaceous matter

a) **Solution combustion synthesis**

Synthesized catalysts

Solution Combustion Synthesis (SCS): • Mn₂O₃ – SCS • Mn₃O₄/Mn₂O₃ – SCS

Figure 1. Solution combustion synthesis representative image. Extracted from [1]

2
$$Mn(NO_3)_2 + \frac{11}{9} C_6 H_8 O_7 + O_2 \rightarrow Mn_2 O_3 + \frac{66}{9} CO_2 + 2N_2 + \frac{44}{9} H_2 O_3$$

Sol-gel (SG) synthesis:

- $Mn_2O_3 SG550$
- $Mn_2O_3 SG650$

Scheme 1. Sol-gel synthesis representative scheme

Web-Conference. Thessaloniki, Greece - June 2021

[1] A. Varma, A.S. Mukasyan, A.S. Rogachev, K. V Manukyan, Solution Combustion Synthesis of Nanoscale Materials, (2016). https://doi.org/10.1021/acs.chemrev.6b00279

Textural properties of the prepared catalysts

Table 1. Textural properties of the fresh powder catalysts.

Catalyst	S _{BET} ^a (m² g⁻¹)	V _P ^b (cm³ g⁻¹)	Crystallites size ^c (nm)
Mn₂O₃-SG550	15	0.12	67
Mn₂O₃-SG650	11	0.10	61
Mn ₂ O ₃ -SCS	22	0.15	52
Mn ₃ O ₄ /Mn ₂ O ₃ -SCS	21	0.13	37 / 53

^aS_{BET}: Specific surface area (BET method) ^b**V**_P: total volume of pores (BJH method) ^cCS: calculated using Scherrer's formula

Web-Conference. Thessaloniki, Greece - June 2021

5

Morphology and textural properties

The Solution Combustion Synthesis allowed the preparation of <u>porous</u> <u>sponge-like structures</u>

The powders resulting from the Sol-gel technique consisted in porous nanoplates

Figure 3. FESEM micrographs of the fresh prepared catalysts and the corresponding ₆ magnifications.

Temperature-programmed reduction analyses

479

522

488

506

500

Temperature (°C)

600

700

361

Mn₂O₃ - SC

Mn₂O₄/Mn₂O₂ - SCS

Mn₂O₃ - SG550³⁵⁰

Mn₂O₃ - SG650

<u>H₂-TPR PROCEDURE</u>

- Instrume<mark>nt:</mark> TPDRO 1100 Thermo<mark>Que</mark>st
- Mass of catalyst: 20 mg.
- Pretreatment: under He: Flow rate: 40 mL min⁻¹ 550 °C 1 h Analysis: using H₂ 5 vol.% in

Signal Intensity (a.u.)

μ

100

Flow rate: 20 mL min⁻¹ Temperature range: 50-800 °C

Temperature ramp: 5 °C min⁻¹

Figure 4. H₂-TPR profiles of the synthesized manganese oxides.

300

Web-Conference. Thessaloniki, Greece - June 2021

- Instrument: Quartz U-tube reactor (ID = 4 mm), equipped with CO/CO₂ NDIR analyzer
- Fixed-bed content: 45 mg catalyst.
 150 mg SiO₂
 5 mg soot
 - **Pretreatment** under N₂:
 - Flow rate: 100 mL min⁻¹
 - 100 °C
 - 30 min
 - **Analysis:** using N₂:
 - Flow rate: 100 mL min⁻¹
 - Temperature range: 100-700 °C
 - Temperature ramp: 5 °C min⁻¹

Figure 5. Outlet concentration of CO2 (section A) and CO (section B) observed during the soot-TPR ⁷ analyses.

X-ray photoelectron spectroscopy (XPS)

Table 2. Relative percentages (at.%) of oxygenspecies calculated from the deconvolution of the O 1sXPS spectra.

Catalyst	Ο _α , OH ⁻ BE (eV)	Ο _α (at.%)	Ο _β BE (eV)	Ο _β (at.%)	Ο _α / Ο _β
Mn₂O₃-SG550	531.4	56.7	529.8	43.3	1.31
Mn₂O₃-SG650	531.2	31.8	529.6	68.2	0.47
Mn ₂ O ₃ -SCS	531.3	38.5	529.6	61.5	0.63
Mn ₃ O ₄ /Mn ₂ O ₃ -SCS	531.4	31.8	529.9	68.2	0.47

Figure 6. XPS spectra in the Mn 2*p* (section A) and O 1*s* core level (section B)

Catalytic Tests: VOC abatement

Probe VOCs: Ethene, propene.

- Mass of catalyst: 0.1 g.
- Fixed bed quartz U-tube microreactor

Pretreatment

- N_2 flow rate: 50 NmL min⁻¹.
- 150 °C
- 1 hour

Testing

- Temperature range 100-280 °C.
- O₂ concentration: 10%.
- VOC concentration: 500 ppm.

0.044 g h L⁻¹

Gas hourly space velocity (GHSV): 20000 h⁻¹.

Catalytic Tests: VOC oxidation

Propene

A direct correlation between the first reduction temperature and the catalytic performances (in terms of $T_{X\%}$) was verified for the Mn₂O₃ the catalytic activity catalysts: improved when the first reduction occurred at lower temperatures. Probable improved oxygen mobility [2,3]

 Table 3. Propene specific reaction rates over
 the prepared catalysts.

Catalyst	r _{propene} ^a (μmol h ⁻¹ m ⁻²)
Mn ₂ O ₃ -SG550	0.94
Mn₂O₃-SG650	0.49
Mn ₂ O ₃ -SCS	0.35
Mn ₃ O ₄ /Mn ₂ O ₃ -SCS	1.48
^a calculated at 130 °C	10

Figure 7. Catalytic performances in the oxidation of C_3H_6 (section A) and correlation between the lowtemperature reduction peak and the catalytic performance in propene oxidation (over Mn₂O₃ catalysts) in terms of $T_{10\%}$, $T_{50\%}$ and $T_{90\%}$ (section B).

Web-Conference. Thessaloniki, Greece - June 2021

[2] M. Piumetti, S. Bensaid, T. Andana, N. Russo, R. Pirone, D. Fino, Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions: From powder catalysts to structured reactors, Appl. Catal. B Environ. 205 (2017) 455-468. https://doi.org/10.1016/j.apcatb.2016.12.054 [3] M.J. Marin Figueredo, T. Andana, S. Bensaid, M. Dosa, D. Fino, N. Russo, M. Piumetti, Cerium-Copper-Manganese Oxides Synthesized via Solution Combustion Synthesis (SCS) for Total Oxidation of VOCs, Catal. Letters. 150 (2020) 1821-1840. https://doi.org/10.1007/s10562-019-03094-x

380

Catalytic Tests: VOC oxidation

Ethene

As observed for propene oxidation, a correlation between the first reduction temperature and the catalytic performances (in terms of $T_{X\%}$) could be drawn for the Mn₂O₃ catalysts.

Table 4. Ethene specific reaction rates overthe prepared catalysts.

Catalyst	r _{ethene} b	
	(µmol h ⁻¹ m ⁻²)	
Mn ₂ O ₃ -SG550	1.67	
Mn ₂ O ₃ -SG650	1.13	
Mn ₂ O ₃ -SCS	1.04	
Mn ₃ O ₄ /Mn ₂ O ₃ -SCS	1.69	

^b calculated at 160 °C

Figure 8. Catalytic performances in the oxidation of C_2H_4 (section A) and correlation between the low-temperature reduction peak and the catalytic performance in ethene oxidation (over Mn_2O_3 catalysts) in terms of $T_{10\%}$, $T_{50\%}$ and $T_{90\%}$ (section B).

Catalytic Tests: Carbon soot

Fixed-bed composition:

- Catalyst: 45 mg
- Inert SiO₂: 150 mg.
- Soot (Printex-U): 5 mg.
- Quartz U-tube microreactor retreatment
- N₂ flow rate: 100 NmL min⁻¹.
- 100 °C
- 30 min **Testing**
- Temperature range 200-700 °C.
- Flow rate: 100 NmL min⁻¹
- O_2 concentration: 10%.
- GHSV: 47700 h⁻¹.

Figure 9. Catalytic conversion of carbon soot as a function of the temperature in "loose" contact conditions

High calcination temperatures probably diminished the overall number of soot- MnO_x contact points present in the catalysts. As well, elevated amount of O_a species enhance the oxidation. [4,6] The spinel Mn_3O_4 overcomes the catalytic performance of the $Mn_2O_3 - SG550$, evidencing that the contact points soot- Mn_3O_4 enhance the catalytic performance: **morphology effect** + (**probable**) **high amount of acid sites over** Mn_3O_4 [4,5]

Figure 10. Catalytic conversion of carbon soot as a function of the temperature in "tight" contact conditions

[5] F.A. Deorsola, S. Andreoli, M. Armandi, B. Bonelli, R. Pirone, Unsupported nanostructured Mn oxides obtained by Solution Combustion Synthesis: Textural and surface properties, and catalytic performance in NOx SCR at low temperature, Appl. Catal. A Gen. 522 (2016) 120–129. <u>https://doi.org/10.1016/j.apcata.2016.05.002</u>

[6] D. Fino, S. Bensaid, M. Piumetti, N. Russo, A review on the catalytic combustion of soot in Diesel particulate filters for automotive applications: From powder catalysts to structured reactors, Appl. Catal. A Gen. 509 (2016) 75–96. https://doi.org/10.1016/J.APCATA.2015.10.016.

Conclusions

- The synthesis procedures allowed the preparation of catalysts with different physicochemical and catalytic properties.
- The best catalytic performances in the abatement of solid carbon soot and VOCs, were observed in the $Mn_2O_3 SG550$ and the Mn_3O_4/Mn_2O_3 -SCS catalysts.

The catalytic oxidation of VOCs was correlated to:

(i) The elevated relative amounts of active surface O_{α} species

(ii) The improved low-temperature reducibility of the catalysts

(iii) The appearance of small crystallites

The catalytic oxidation of soot was associated to:

(i) In "tight" contact conditions, to the elevated relative amounts of O_{α} species and the improved low-temperature reducibility of the catalysts

(ii) In "loose" contact conditions, to the combined effect of a filter-like morphology and a probable high amount of surface acid sites, characteristic of Mn_3O_4 catalysts

Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768692.

Thanks for your attention!