THESSALONIKI 2021 8th International Conference on Sustainable Solid Waste Management

Utilization of Landfill Leachate for the Production of Oleaginous Yeast *Y. Lipolytica*

Hülya ÜNVER Assoc. Prof. Mahmut ALTINBAŞ Istanbul Technical University

24 June 2021

OBJECTIVES OF THE STUDY

> To assess the potential of landfill leachate (LL) for the production oleaginous yeast *Y. Lipolytica.*

> To identify the potential of oleaginous lipid production in LL.

- > Integrability of oleaginous yeast sp. to pre/post treatment.
 - >To determine the removal efficiencies of COD, N, P.

INTRODUCTION

- Landfill Leachate (composition, age of LL, treatment)
- Oleaginous Yeast Y. lipolytica
- Literature Background (species cultivation in LL)
- **EXPERIMENTAL APPROACH**
- RESULTS
 - Growth optimization of Y. lipolytica
 - Lipid production, biomass composition

CONCLUSION

INTRODUCTION

Landfill Leachate

Effluent produced by;

the rainwater percolation through the waste layers

the biochemical processes occurring in the landfill body and the intrinsic water content.

Composition of Landfill Leachate

•Inorganic, natural and xenobiotic compounds.

•Organic matter (biodegradable and refractory), chlorinated organics.

•Ammonia nitrogen

•Heavy metals, inorganic salts

•Immiscible liquids (Oils)

•Small particulates.

•A range of organisms (bancteria, virus)

A landfill leachate treatment site

Classification of LL according to Age

	Young	Medium	Old
Age	<5	5-10	>10
рН	<6.5	6.5-7.5	>7.5
COD	>10,000	4,000-10,000	<4,000
BOD5/COD	>0.3	0.1-03	<0.1
Heavy metals	>2.0	<2.0	<2.0
Organics	80% VFA	5–30% VFA + humic and fulvic acids	humic and fulvic acids
Biodegradability	High	Medium	Low

Renou et al. 2008; Abbas et al. 2009

Treatment Methods of Landfill Leachate

	Age of LL		
Treatment	Young	Medium	Old
Channeling Combined with domestic sewage Recycling	Good Good	Fair	Poor
Biological (Aerobic, Anaerobic)	Good	Fair	Poor
Physico/chemical Coagulation Precipitation Adsorption Oxidation Striping	Poor Poor Poor Poor Poor	Fair Fair Fair Fair Fair	Fair Poor Good Fair Fair
Membrane filtration Microfiltration Ultrafiltration Nano Reverse Osmosis	Poor Poor Good Good	- - Good Good	- - Good Good

Oleginous Yeast Yarrowia Lipolytica

- > *Y. lipolytica* is a dimorphic, non-pathogenic ascomycetous yeast.
- Oil feedstock for alternative sustainable fuels sources
- High-oil yeast up to 70% of lipids by dry cell weight.
- Environments of hydrophobic substrates
 - Dairy products
 - Oily waste
 - Soils contaminated with oils
 - Marine sediments
 - Wastewaters

Literature Background

- 1) Energy crops¹ (sunflower, soybean, rapeseeds)- phytotreatment
- 2) <u>Ascomycete fungi *Lambertella sp.*²</u> TOC removal 90%
- 3) Fungal strain³ bioremediation
- White-rot basidiomycete *Trametes trogii*⁴ reduction of phenols, N, hydrocarbons
- 5) Photosynthetic bacteria⁵ <u>*R. Palustris*</u>

1. PhD thesis, Garbo, 2018. 2: Siracusa et al. 2020. 3: Spina et al.2018. 4 – Smaoui et al., 2019 5 – Wang et al. 2018

EXPERIMENTAL APPROACH

LL used in the study

Fermentation of samples at 28°C in shake flask.

Experimental Approach

Y. Lipolytica Seed *C*ulture

Growth Optimization in Batch LL Samples

LL Conc. (50–100%)

Phosphorous, Yeast Extract

Glucose

Analysis of

RESULTS

- Characterization of LL
- **Growth Optimization of** *Y. Lipolytica* in LL
 - 1. Concentration of LL (50-100%)
 - 2. Nutrient Suppliment
 - Phosphorous (0.25-1000mg/L)
 - Yeast Extract (100,1000,10,000 m/gL)
 - Carbon Source (C/N Ratios of 5, 50, 100, 125)
- > Lipid yields from *Y. lipolytica* Biomass

Characterization of Landfill Leachate

	Raw	Raw Autoclaved
рН	8.3	9.8
Conductivity (mS/cm)	35.5	-
Alkalinity(gCaCO3/L)	-	10.5
SS (mg/L)	852	791
VSS (mg/L)	751	713
TCOD (g/L)	11.2	11.2
sCOD (g/L)	10.9	11.2
TKN (g/L)	3634	2470
$NH_{2}N(g/L)$	2920	1960
TP (mg/L)	100	100
Ortho P (mg/L)	3.7	3.9

Growth Optimization of *Y. Lipolytica* in LL Optical Density

Growth Optimization of *Y. Lipolytica* in LL Biomass Production (P, Y.E. Addition)

Growth Optimization of Y. Lipolytica in LL **Biomass Production (Glucose Addition)**

SS VSS

Growth Optimization of *Y. Lipolytica* in LL COD Removal

Lipid Production of *Y. Lipolytica* in LL (Concentration of Raw LL)

Cell Content (%) 100 90 % Lipid/Protein/Carbohydrate 80 70 60 50 40 30 20.56 18.18 16.53 15,27 14,45 20 13,98 10.28 10 0 YPD 50 60 70 80 90 100 LL Concentration % Lipid – Protein Carbohvdrate

Lipid Production of *Y. Lipolytica* in LL (P Addition)

Cell Content (%)

Lipid Production of *Y. Lipolytica* in LL (Y.E. Addition)

Cell Content (%)

Lipid Production of *Y. Lipolytica* in LL (Glucose Addition - C/N Ratio)

Cell Content (%)

CONCLUSION

Conditions of the Study	Max. Biomass Productivity (mgVSS/L)	Max. Lipid Productivity (wt%)
Concentration	100% Raw LL (2.2)	90% LL (18.2)
Phosphorous +LL	125 mg/L P (2.6)	375 mgP /L (25.4)
Yeast Extract +LL	10 g/L Y.E (5.5)	10 g/L Y.E (19.8)
C/N Stress	C/N 50 (15.1)	C/N 100 (36)
YPD Media	(10.4)	(20.6)

CONCLUSION

 Y. lipolytica in 100% LL can be improved with carbon and phosphorous addition.

 C/N 50 – the best conditon to maximize both biomass and lipid yield above 30%.

 Promising in revaluation of landfill leachate and obtaining valuable microbial products.

Acknowledgements

The authors acknowledge the support from "The Scientific and Technological Research Council of Turkey" for the Oleaginous Yeast Project (TUBITAK -115Y349).

Thanks for your interest