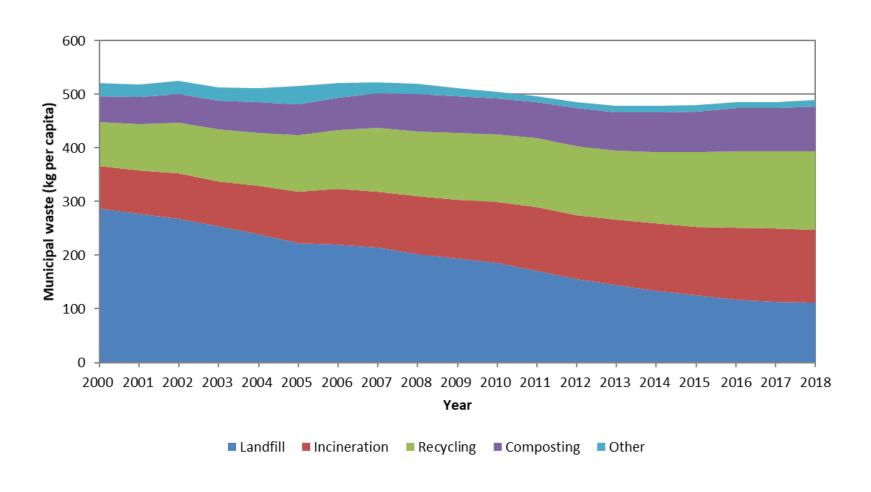
Innovative low-cost technology for leachate treatment and valorisation

F. Corona, M. Gómez, D. Hidalgo, J.M. Martín-Marroquín

Francisco Corona Encinas Ph.D.

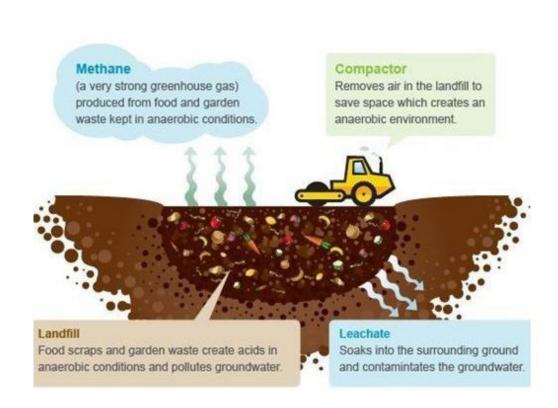
Background

- In the EU, annually **16 tonnes** of materials are used by each person and **6 tonnes** of it are converted into waste.
- Solid waste can be disposed in various ways:
 - Incineration.
 - Landfilling.
 - Recycling.
 - Composting.


- Landfilling has been the most commonly used solid waste disposal, specially in the Mediterranean and Eastern Europe countries.
- Landfills present long-term threats to soil, air, groundwater and surface water due formation of greenhouse gases (methane gas and carbon dioxide from decomposing garbage) and **leachate**.

Background

Municipal waste generation and treatment, EU-27 (Source: Eurostat, 2020)



Leachate

- Leachate is the **liquid fraction** of the already existing moisture/liquid within the **solid waste** and the continuously formed liquid with dissolved and suspended solids extracted from the waste while rainfall percolates through it.
- Not only during their useful life, but also **fifty years after their closure**, landfills keep on producing leachate.
- Approximately, **10 m³** of leachate is generated per **115 tonnes** of solid waste.
- The **composition** of leachate **differs** from site to site and also within the landfill, the composition of the leachate alters with time (from weeks to years).

Leachate

- The composition of the leachate depends on factors such as characteristics of the waste:
 - moisture content.
 - climatic conditions.
 - degree of compaction.
 - age of the landfill.

Therefore, the leachate composition cannot be generalised and an unique treatment option cannot be suggested.

Leachate

- In the absence of treatment, leachate is:
 - Recycled back to the waste to maintain the biological activity in the composting solid waste by keeping it moist.
 - Send it to sewer or to a wastewater treatment plant (WWTP) in case they do not treat it on site.

Leachate treatment processes comparative costs (Source: Adapted from Giraldo, 2001)

Treatment technology	Cost (€/m³)	
Aerobic process with nitrogen removing	15.00	
Two steps reverse osmosis	7.50	
Biologic process + carbon activated + precipitation	18.75-26.25	
Biologic process + reverse osmosis + concentrate evaporation	26.25-30.00	
LIFE LEACHLESS technology (solar evaporation/condensation + forward osmosis)	4.75	

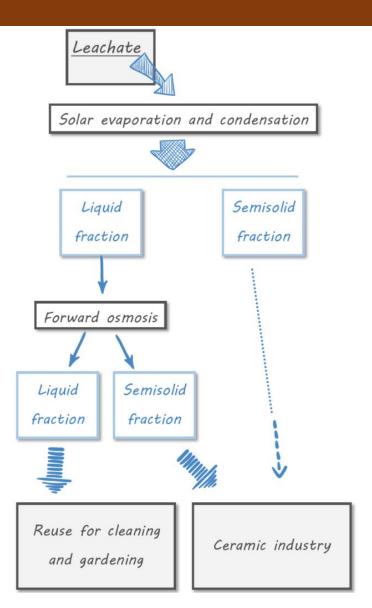
LIFE LEACHLESS project

- LIFE LEACHLESS project demonstrates the **feasibility of an innovative in-situ treatment process** for leachates generated in landfills and waste treatment plants.
- The project LIFE LEACHLESS proposes a **sustainable management** composed of specially designed solar panels, which reach to very high temperatures to evaporate the leachate.
- Then the vapour is condensed to follow its path through **forward osmosis** (FO) step. FO requires less energy than the reverse osmosis (RO) and has less fouling problems.
- The project is **easy to replicate** and **easy to operate** and **maintain**.
- The proposed system is a **universal solution** independent of the leachate composition.

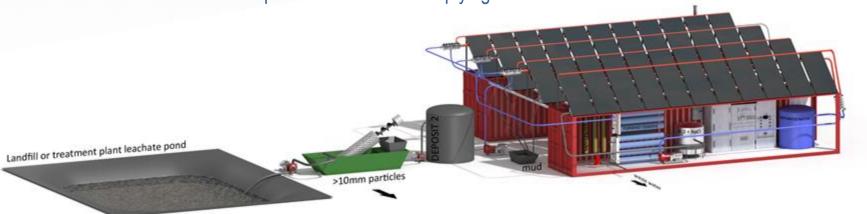
Main objectives

- The LIFE LEACHLESS project will promote water resources management actions in accordance with the Water Framework Directive 2000/60/EC by enabling managers of landfills and waste treatment centres to achieve good qualitative and quantitative status of their effluents.
- The LEACHLESS project proposes a **treatment model** that will be carried out **"in-situ"** using a **cost-effective** novel technology that combines **solar evaporation/condensation** plus **forward osmosis**. The prototype will be powered by **renewable energies** (solar energy, biomass and residual heat), which will minimise the **carbon footprint** of the process.
- The final effluent will be **reused** for **cleaning** and **gardening** purposes. A minority **semi-solid** residual **stream** will be also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be **valorised** in ceramic industries to improve the final products characteristics.

The figures of the project

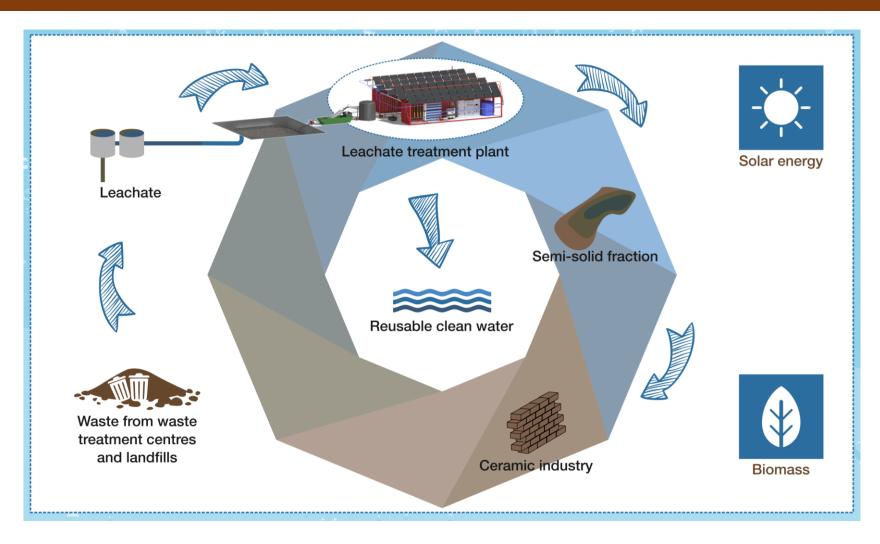

	Start: 01/10/2016		Total budget: 1,775,805 €
Dates	End: 31/12/2020	Figures	EU contribution: 1,041,237 € (60% of eligible budget)
	Extension: 31/06/2022		3 partners

Process diagram



LIFE LEACHLESS prototype

- The proposed treatment system is composed of two main separation processes:
 - a **novel solar panel**, which evaporates and condenses the leachate in the first step.
 - **forward osmosis** step to obtain effluent complying with the reuse standards.


- This system will be placed in three containers (12mx2,4mx2,9m), for the easy portability between the demonstrations sites:
 - a waste treatment centre in Spain.
 - a landfill in Greece.
- The maximum capacity of the plant is 12-8 m³/day.

LIFE LEACHLESS project and circular economy philosophy

- Prior to the construction of the demonstration plant, **laboratory-scale tests** were carried out with the two technologies.
 - Solar evaporation/condensation.
 - Forward-osmosis
- The aim was to optimise the operating conditions of the individual treatment processes.
- The results will serve as the basis for the **design** of the demonstration plant.

- After the lab-scale tests, the construction of the demonstration plant was carried out.
- The plant is currently operating at the **first demo site** (Waste Treatment Centre in Lanzarote) to carry out **process optimisation**.

Preliminary results of the leachate treatment system from the demonstration plant are available (in the first facilities, Waste Treatment Center in Lanzarote, Spain):

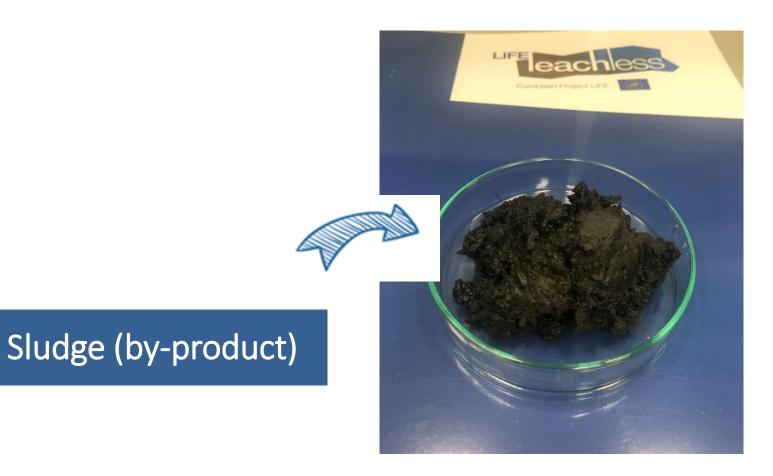
Parameter	Unit	Initial Leachate	Final effluent	Limit value
Ammonia-NH ₄ -N	mgN/L	1,023.5	3.6	≤ 5
Chloride	mg/L	2,200	88.4	<100
Conductivity	mS/cm	17.77	0.68	<1
BOD ₅	mgO ₂ /L	>12,000	<20	<25
COD	mgO ₂ /L	25,898.7	93.2	<125
Total nitrogen	mg/L	1,436	<2	<2
рН		6.47	7.9	6-8.5
Sulphate – SO ₄ ²⁻	mg/L	143	<10	<10
Total suspended solids (TSS)	mg/L	4,175	<2	<2
Calcium	mg/L	848.39		
Magnesium	mg/L	114.79	0.06*	
Sodium	mg/L	790.15	11.8	<70
Potassium	mg/L	1,245.13		
Zinc	mg/L	Not analysed	0.008*	<0.5
Copper	mg/L	Not analysed	0.098	<0.1
Chromium	mg/L	Not analysed		<0.1
Lead	mg/L	Not analysed	0.005*	<0.05
Nickel	mg/L	Not analysed		<0.05
Cadmium	mg/L	Not analysed		<0.005

⁻⁻⁻ Not detected
*Below the quantification limit
(estimated value)

Samples from the demonstration plant operation in Lanzarote:

Initial leachate

Final effluent


Effluent after 1st evaporation/condensation

■ Samples from the demonstration plant operation in Lanzarote:

- All parameter **concentrations** have been considerably **reduced**.
 - COD reduction of 99%.
 - Very low metal concentrations.
 - Reduction of sodium concentration of 98%

- Optimisation of operating and process conditions for solar evaporation/condensation and forward osmosis.
- Aquaporin[™] hollow fiber membrane selected for forward osmosis process.
- Recovery of up to **70-60%** of the leachate (the remainder is recovered as sludge or reused in the drawn solution).
- Quality of the final effluent according to the limits established by legislation.
- **Sludge** obtained as a by-product with an interesting metallic composition to be used in the formulation of **ceramic components**.

Thank you for your attention

e-mail: fraenc@cartif.es Francisco Corona Encinas Ph. D.

Low energy treatment technology for leachate valorisation

www.lifeleachless.eu

@LIFELEACHLESS

This project has received funding by the LIFE Programme under the responsibility of the Directorate General for the Environment of the European Commission through the agreement LIFE15 ENV/ES/000530 - LIFE LEACHLESS project