8th INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT THESSALONIKI 23-26 JUNE 2021

Thermal and acidic pre-treatments applied to cow manure: effects on pathogenic bacteria persistence and on biogas production during thermophilic anaerobic digestion

C. Delmon, A. Prorot, C. Maftah, M. Casellas-Français

Anaerobic digestion

H. Salsali *et al.* (2006); H. Salsali *et al.* (2008); Scaglia *et al.* (2014); Orzi *et al.* (2015); Liu *et al.* (2019)

Anaerobic digestion

H. Salsali et al. (2006); H. Salsali et al. (2008); Scaglia et al. (2014); Orzi et al. (2015); Liu et al. (2019)

Objectives

Evaluate impact of pre-treatments on cow manure

2) Impact on biogas production

Types of pre-treatments and bacteria enumeration

Acidic pre-treatments : equimolar mixture of acetic, propionic and butyric acids

Materials and Methods Results and Discussion

Conclusion

Biochemical methane potential (BMP) production assessment

Inoculum = agricultural anaerobic digester

4/5 inoculum (Volatile Solids basis)

Thermophilic conditions (55°C)

Substrate = cow manure

1/5 substrate (Volatile Solids basis)

Acidic pre-treatments

Bacteria	Acidic pre-treatments	
Escherichia coli	No influence	
Enterococcus sp.	1-log reduction at 6 g/L	
Clostridium perfringens spores	No influence ?	

Substrate	Influence on overall CH4 production	
Pre-treated (1.5 g/L) cow manure	No influence	
Pre-treated (3 g/L) cow manure	Slight increase	
Pre-treated (6 g/L) cow manure		

Acidic pre-treatments D. C. Devlin *et al.* (2011); T. Tommasi et al. (2008); Y. Li *et al.* (2021)

Bacteria	Acidic pre-treatments	
Escherichia coli	No influence	
Enterococcus sp.	1-log reduction at 6 g/L	
Clostridium perfringens spores	No influence ?	

Faecal contamination indicators

Influence of matrix type

Substrate	Influence on overall CH4 production	
Pre-treated (1.5 g/L) cow manure	No influence	
Pre-treated (3 g/L) cow manure	Slight increase	
Pre-treated (6 g/L) cow manure		

Ease the anaerobic digestion's first step

Sporulating bacteria

Only acid : no effect

Conclusion

Thermal pre-treatment

Bacteria	Thermal pre-treatment	
Escherichia coli	2-log reduction	
Enterococcus sp.		
Clostridium perfringens spores	No influence ?	

Substrate	Influence on overall CH4 production
Thermal pre-treated cow manure	No real influence

Thermal pre-treatment

A.-M. Pourcher et al. (2009); X. Liu et al. (2019); Y. Li et al. (2021)

Bacteria	Thermal pre-treatment	Substrate	Influence on overall
Escherichia coli	2-log reduction		
Enterococcus sp.		Thermal pre-treated	No real influence
Clostridium perfringens spores	No influence ?	cow manure	

Faecal contamination indicators

« Jumbled matrix »

Not a pure culture

Organic matter solubilisation

Sporulating bacteria

Weak effect on spores

Acido-thermal pre-treatments H. Salsali *et al.* (2008)

Bacteria	Acido-thermal	Acido-thermal	Acido-thermal	
	pre-treatment	pre-treatment	pre-treatment	
	(1.5 g/L)	(3 g/L)	(6 g/L)	
Escherichia coli	2-log reduction	4-log reduction	total reduction	
Enterococcus	1.5-log	1.6-log	1.7-log	
sp.	reduction	reduction	reduction	
Clostridium perfringens spores	High standard deviation			

Faecal contamination indicators

Synergistic effect

Sporulating bacteria

Effect on *C. perfringens* but both vegetative and spores H. Salsali et al. (2008)

Acido-thermal pre-treatments F. Passos *et al.* (2017)

Substrate	Influence on overall CH4 production	
Acido-thermal (1.5 g/L + 1 hour at 70°C) pre-treated cow manure	No real influence	
Acido-thermal (3 g/L + 1 hour at 70°C) pre-treated cow manure	nure Lower methane production nure	
Acido-thermal (6 g/L + 1 hour at 70°C) pre-treated cow manure		

Higher methane production F. Passos et al. (2017)

Conclusion

Reduce pathogen survival

Deep impact on Escherichia coli and Enterococcus sp.

No real impact on spores

Synergistic effects between two pre-treatments

Impact on biogas production

Lower methane production with acido-thermal pre-treatments

How could we explain persistence of spores ?

Why a lower methane production ?

Thank you for your attention

Bibliography

D. C. Devlin, S. R. R. Esteves, R. M. Dinsdale, and A. J. Guwy, 'The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge', Bioresource Technology, vol. 102, no. 5, pp. 4076–4082, Mar. 2011, doi: 10.1016/j.biortech.2010.12.043

Y. Li, J. Zhao, J. Krooneman, and G. J. W. Euverink, 'Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential', Science of the Total Environment, p. 25, 2021.

X. Liu, T. Lendormi, M. Le Fellic, Y. Lemée, and J.-L. Lanoisellé, 'Hygienization of mixed animal by-product using Pulsed Electric Field: Inactivation kinetics modeling and recovery of indicator bacteria', Chemical Engineering Journal, vol. 368, pp. 1–9, Jul. 2019, doi: 10.1016/j.cej.2019.02.158

V. Orzi *et al.*, 'The role of biological processes in reducing both odor impact and pathogen content during mesophilic anaerobic digestion', *Science of The Total Environment*, vol. 526, pp. 116–126, Sep. 2015, doi: 10.1016/j.scitotenv.2015.04.038.

F. Passos, V. Ortega, and A. Donoso-Bravo, 'Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation', Bioresource Technology, vol. 227, pp. 239–246, Mar. 2017, doi: 10.1016/j.biortech.2016.12.034.

A.-M. Pourcher, C. Burton, C. Ziebal, and A. De-Guardia, 'Impact of temperature-time combinations on enteric bacteria in separated solids from pig manure', p. 5.

H. R. Salsali, W. J. Parker, and S. A. Sattar, 'Impact of concentration, temperature, and pH on inactivation of *Salmonella* spp. by volatile fatty acids in anaerobic digestion', *Can. J. Microbiol.*, vol. 52, no. 4, pp. 279–286, Apr. 2006, doi: 10.1139/w05-125.

H. Salsali, W. J. Parker, and S. A. Sattar, 'The effect of volatile fatty acids on the inactivation of Clostridium perfringens in anaerobic digestion', World J Microbiol Biotechnol, vol. 24, no. 5, pp. 659–665, May 2008, doi: 10.1007/s11274-007-9514-4

B. Scaglia, G. D'Imporzano, G. Garuti, M. Negri, and F. Adani, 'Sanitation ability of anaerobic digestion performed at different temperature on sewage sludge', *Science of The Total Environment*, vol. 466–467, pp. 888–897, Jan. 2014, doi: 10.1016/j.scitotenv.2013.07.114.

T. Tommasi, G. Sassi, and B. Ruggeri, 'Acid pre-treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: effectiveness and reproducibility', Water Science, p. 6, 2008