Thermal and acidic pre-treatments applied to cow manure: effects on pathogenic bacteria persistence and on biogas production during thermophilic anaerobic digestion

C. Delmon, A. Prorot, C. Maftah, M. Casellas-Français
Anaerobic digestion
H. Salsali et al. (2006); H. Salsali et al. (2008); Scaglia et al. (2014); Orzi et al. (2015); Liu et al. (2019)

« Green » energy

Agricultural anaerobic digestion

Biogas

Digestate
Introduction

Materials and Methods

Results and Discussion

Conclusion

Anaerobic digestion

H. Salsali et al. (2006); H. Salsali et al. (2008); Scaglia et al. (2014); Orzi et al. (2015); Liu et al. (2019)

Hygienization

but

Pathogenic bacteria persistence

Pre-treatments

Acidic pre-treatment

Thermal pre-treatment

Combination between 2 pre-treatments
Objectives

Evaluate impact of pre-treatments on cow manure

1) Ability to reduce pathogen survival

2) Impact on biogas production
Types of pre-treatments and bacteria enumeration

<table>
<thead>
<tr>
<th>Pre-treatments</th>
<th>Acidic pre-treatments</th>
<th>Thermal pre-treatment</th>
<th>Acido-thermal pre-treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5 g/L</td>
<td>1 hour at 70°C</td>
<td>1.5 g/L + 1 hour at 70°C</td>
</tr>
<tr>
<td></td>
<td>3 g/L</td>
<td>1 hour at 70°C</td>
<td>3 g/L + 1 hour at 70°C</td>
</tr>
<tr>
<td></td>
<td>6 g/L</td>
<td>1 hour at 70°C</td>
<td>6 g/L + 1 hour at 70°C</td>
</tr>
</tbody>
</table>

Acidic pre-treatments: equimolar mixture of acetic, propionic and butyric acids

Cow manure

- **Clostridium perfringens** (spores)
- **Enterococcus sp. and Escherichia coli**
Biochemical methane potential (BMP) production assessment

Materials and Methods

- **Inoculum** = agricultural anaerobic digester
- **Substrate** = cow manure
- **Thermophilic conditions** (55°C)
- **4/5 inoculum** (Volatile Solids basis)
- **1/5 substrate** (Volatile Solids basis)
Introduction

Materials and Methods

Results and Discussion

Conclusion

Acidic pre-treatments

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Acidic pre-treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>No influence</td>
</tr>
<tr>
<td>Enterococcus sp.</td>
<td>1-log reduction at 6 g/L</td>
</tr>
<tr>
<td>Clostridium perfringens spores</td>
<td>No influence ?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Influence on overall CH4 production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated (1.5 g/L) cow manure</td>
<td>No influence</td>
</tr>
<tr>
<td>Pre-treated (3 g/L) cow manure</td>
<td>Slight increase</td>
</tr>
<tr>
<td>Pre-treated (6 g/L) cow manure</td>
<td></td>
</tr>
</tbody>
</table>
Bacteria Acidic pre-treatments

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Acidic pre-treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>No influence</td>
</tr>
<tr>
<td>Enterococcus sp.</td>
<td>1-log reduction at 6 g/L</td>
</tr>
<tr>
<td>Clostridium perfringens spores</td>
<td>No influence ?</td>
</tr>
</tbody>
</table>

Substrate Influence on overall CH4 production

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Influence on overall CH4 production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treated (1.5 g/L) cow manure</td>
<td>No influence</td>
</tr>
<tr>
<td>Pre-treated (3 g/L) cow manure</td>
<td>Slight increase</td>
</tr>
<tr>
<td>Pre-treated (6 g/L) cow manure</td>
<td></td>
</tr>
</tbody>
</table>

Faecal contamination indicators

- Influence of matrix type
- Sporulating bacteria
- Only acid: no effect

Ease the anaerobic digestion’s first step
Thermal pre-treatment

Bacteria

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Thermal pre-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>2-log reduction</td>
</tr>
<tr>
<td>Enterococcus sp.</td>
<td></td>
</tr>
<tr>
<td>Clostridium perfringens spores</td>
<td>No influence ?</td>
</tr>
</tbody>
</table>

Substrate

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Influence on overall CH4 production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal pre-treated cow manure</td>
<td>No real influence</td>
</tr>
</tbody>
</table>
Bacteria | **Thermal pre-treatment** | **Substrate** | **Influence on overall CH4 production**
---|---|---|---
Escherichia coli | 2-log reduction | Thermal pre-treated cow manure | No real influence
Enterococcus sp. | | |
Clostridium perfringens spores | No influence ? | |

Faecal contamination indicators

- « Jumbled matrix »
- Not a pure culture
- Sporulating bacteria
- Weak effect on spores

Organic matter solubilisation
Acido-thermal pre-treatments

H. Salsali *et al.* (2008)

- **Bacteria**
 - *Escherichia coli*
 - Acido-thermal pre-treatment (1.5 g/L): 2-log reduction
 - Acido-thermal pre-treatment (3 g/L): 4-log reduction
 - Acido-thermal pre-treatment (6 g/L): total reduction
 - *Enterococcus sp.*
 - Acido-thermal pre-treatment (1.5 g/L): 1.5-log reduction
 - Acido-thermal pre-treatment (3 g/L): 1.6-log reduction
 - Acido-thermal pre-treatment (6 g/L): 1.7-log reduction
 - *Clostridium perfringens* spores
 - High standard deviation

Faecal contamination indicators

- **Sporulating bacteria**
 - *Clostridium perfringens*
 - Synergistic effect
 - Effect on *C. perfringens* but both vegetative and spores
Acido-thermal pre-treatments

F. Passos et al. (2017)

Substrate Influence on overall CH4 production

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Influence on overall CH4 production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acido-thermal (1.5 g/L + 1 hour at 70°C) pre-treated cow manure</td>
<td>No real influence</td>
</tr>
<tr>
<td>Acido-thermal (3 g/L + 1 hour at 70°C) pre-treated cow manure</td>
<td>Lower methane production</td>
</tr>
<tr>
<td>Acido-thermal (6 g/L + 1 hour at 70°C) pre-treated cow manure</td>
<td>Higher methane production F. Passos et al. (2017)</td>
</tr>
</tbody>
</table>
Introduction

Materials and Methods

Results and Discussion

Conclusion

Reduce pathogen survival

Deep impact on *Escherichia coli* and *Enterococcus sp.*

No real impact on spores

Synergistic effects between two pre-treatments

Impact on biogas production

Lower methane production with acido-thermal pre-treatments

How could we explain persistence of spores?

Why a lower methane production?
Thank you for your attention
Bibliography

