Optimising Feedstock Flowrate to Improve the Performance of an Existing Anaerobic Digestion System

RJAA JAWAD ASHRAF

ashrafr7@uni.coventry.ac.uk

DTA3 COFUND Marie Skłodowska-Curie PhD Fellow

Co-authors: Dr. Jonathan Nixon, Prof. James Brusey

Coventry University, UK

24th June 2021
Contents

1. Background
2. Problem Statement
3. Aim & Methodology
4. Case Study
5. Component Models & Optimisation Problem
6. Optimisation Scenarios
7. Current vs. Optimised System
8. Conclusions & Future Work
Background

Renewable energy generation, World

Source: BP Statistical Review of Global Energy
Note: "Other renewables" refers to renewable sources including geothermal, biomass, waste, wave and tidal. Traditional biomass is not included.
Problem Statement

“What if we don’t change at all ... and something magical just happens?”

AD Model

ADM1
Predictive
Experimental

Literature

Anaerobic Digester

STANDARDIZED

100% QUALITY

9-count
12-count

24/06/2021
Coventry University
Aim & Methodology

Aim:
Investigate how first order models can be used with plant data to improve system control by balancing conflicting objectives.
Case Study
Component Models

SHREDDER
- Specify screen size (mm), motor speed (rpm) & flow rate (kg/min)
- Determine specific energy consumption (kWh/kg)
- Determine energy needed to heat feedstock to digestion temperature (kJ)
- Determine temperature of water required in coil (°C)
- Determine energy needed to heat water (kJ)

DIGESTER
- Heat Required
 - Determine energy needed to heat feedstock to digestion temperature (kJ)
- Heat Loss
 - Determine heat loss from the digester sides, top & bottom (kJ)
- Determine temperature of water required in coil (°C)
- Determine energy needed to heat water (kJ)

Biogas Production
- Use modified Gompertz model to determine daily biogas production (m3/kgVS)
- Determine daily biogas production (m3/day)

H₂S SCRUBBER
- Determine mass of H₂S to be removed (kg)
- Use literature to determine coefficients for modified Gompertz model
- Use modified Gompertz model to determine daily biogas production (m3/kgVS)
- Determine amount of adsorbent required (kg)
- Determine adsorbent cost ($) (°C)

H₂O CONDENSER
- Determine mass of water to be removed (kg)
- Use saturation vapour pressure vs. temperature table to determine dew point temperature (°C)
- Determine energy needed to cool biogas to dew point temperature (kJ)

Heat Loss
- Determine energy needed to heat feedstock to digestion temperature (kJ)

Heat Required
- Determine energy needed to heat feedstock to digestion temperature (kJ)
- Determine heat loss from the digester sides, top & bottom (kJ)

Heat Loss
- Determine heat loss from the digester sides, top & bottom (kJ)

Determine specific energy consumption (kWh/kg)
- Determine specific energy consumption (kWh/kg)

Determine energy needed to heat water (kJ)
- Determine energy needed to heat water (kJ)

Determine temperature of water required in coil (°C)
- Determine temperature of water required in coil (°C)

Determine heat loss from the digester sides, top & bottom (kJ)
- Determine heat loss from the digester sides, top & bottom (kJ)

Determine biogas production (m3/day)
- Determine biogas production (m3/day)

Determine adsorbent cost ($)
- Determine adsorbent cost ($) (°C)

Determine amount of adsorbent required (kg)
- Determine amount of adsorbent required (kg)

Determine mass of H₂S to be removed (kg)
- Determine mass of H₂S to be removed (kg)

Determine energy needed to cool biogas to dew point temperature (kJ)
- Determine energy needed to cool biogas to dew point temperature (kJ)
Optimisation Problem

• Scenario 1
 • Min. unmet demand (m³)
 • Min. biogas flared (m³)

• Scenario 2
 • Min. unmet demand (m³)
 • Min. biogas flared (m³)
 • Min. energy cost ($/kgVS)

• Optimisation Solver
 • NSGA II (Python)

\[
C_{EC} = \left(\left(E_{\text{shred}} + \frac{(E_{\text{heatwater}} + E_{\text{loss}} + E_{\text{condenser}})}{1000 \times 3.6} \right) \times C_{\text{elec}} + C_{\text{H2S}} \right) / (m_r \times VS)
\]
Optimisation Scenarios

- Feedstock Flowrate m_f (kg/day)
- Balloon Level $V_9 - BL$ (m³)
- LPG Required V_{LP} (m³)
- Energy Cost C_{EC} (USD/kgVS)
- Biogas Produced V_{BP} (m³)
- Biogas Flared V_{BF} (m³)
- Gas Consumption V_C (m³)

Min. unmet demand (m³)
Min. biogas flared (m³)

Min. energy cost ($/kgVS$)

24/06/2021 Coventry University
Current vs. Optimised System

Current System

- Feedstock Flowrate m_f (kg/day)
- Balloon Level V_{BBL} (m3)
- LPG Required V_{LPG} (m3)
- Energy Cost C_{EC} (USD/kgVS)
- Biogas Produced V_{B-P} (m3)
- Biogas Flared V_{B-F} (m3)
- Gas Consumption V_C (m3)

Optimised System

24/06/2021 Coventry University
Conclusions & Future Work

• Optimisation
 • Add weightings to objective functions;
 • Assign an environmental penalty to flaring biogas;
 • Components altered &/or sized differently & different system configurations e.g.
 • Alternate pre and post treatment technologies;
 • Passing biogas through CHP unit to generate electricity & heat;
 • Additional objective functions & decision variables.

• AD Model
 • Modified Gompertz model not suitable for digesters operating in continuous mode
 • Plant data for entire year & values of digester operational variables (pH, temperature etc.)
Thank You!

Questions?