THESSOLONIKI 2021

Anaerobic digestion of hydrothermal liquefaction wastewater and biochar from spent coffee grounds

GABRIEL FRUGOLI

UNIVERSITY OF SÃO PAULO

Gabriel Frugoli

Food Engineering at Faculdade de Zootecnia E Engenharia de Alimentos-Universidade de São Paulo (Zootecnia and Food Engineering College –University of the State of São Paulo

23 years old

PhD Professor Giovana Tommaso

Maria Eduarda Dias

Introduction

Figure 1. Evolution of global coffee consumption growth.

Source: Coffee Statistics, 2021.

Source: Dattatraya Saratale et al., 2020.

Introduction

Figure 3. Hydrothermal liquefaction abstract.

Source: Gu et al., 2020.

Purpose

This research aimed at the soluble organic content reduction and the methane recovering from the post hydrothermal liquefaction wastewater (PHWW) of SCG through the anaerobic digestion process enhanced by the addition of activated carbon and biochar, the coproduct of the HTL process, as adsorbents.

Methods

Results – Adsorption

Table1. Adsorption capacity of ASR and GAC.

	ASR		GAC		
	Efficiency removal (%)	$q_{\rm e} ({\rm mg. \ g^{-1}})$	Efficiency removal (%)	$q_{\rm e} ({\rm mg. \ g^{-1}})$	
COD	7.3 ± 0.7	$443.3 \pm 61,2$	12.1 ± 2.7	$79.,9 \pm 175.1$	
Phenols	7.0 ± 5.2	$33.2 \pm 24,5$	15.0 ± 6.2	71.0 ± 29.3	

$$%R = \frac{(C_i - C_f)}{C_i} \cdot 100$$
 Equation (1); $q_e = \frac{(C_i - C_f) \cdot V}{m}$ Equation (2)

Whereas: % R is removal efficiency, q_e is adsorption capacity (mg·g⁻¹), c_i is initial concentration (mg·L⁻¹), c_f is final concentration (mg·L⁻¹), v is nominal volume (L) and m is mass of adsorbent (g).

Results – Anaerobic Digestion

Table 2. COD and total phenols values measured during the incubation period. AD is anaerobic digestion, GAC is activated carbon and ASR is activated solid residue

Studied AD condition	Adsorbent addition	$COD (g \cdot L^{-1})$		COD	Phenols (mg·L ⁻¹)		Phenols
		Affluent	Effluent	removal (%)	Affluent	Effluent	removal (%)
First Exposition	No	1.43 ± 0.07	0.67 ± 0.01	53.06	66.9 ± 0.0	62.1 ± 5.3	7.18
Second Exposition	No	2.21 ± 0.01	1.21 ± 0.01	45.16	198.7 ± 30.0	165.1 ± 6.2	16.90
	No		2.42 ± 0.26	54.24		262.39 ± 9.13	36.05
Third Exposition	GAC	5.29 ± 1.69	1.59 ± 0.04	69.84	410.34 ± 15.28	156.18 ± 3.27	61.94
	ASR		2.23 ± 0.23	57.78		224.06 ± 10.57	45.40

Results – Methane production profile

Figure 5. Methane production profile experimental data and exponential equation adjust.

Figure 6. Accumulated methane experimental potential and the theoretical methane potential (maximum).

Results – Gompertz parameters

Table 3. Curve fitting for methane profile production (Exponential and Modified Gompertz equations)and methane yields (experimental and theorical).

Experimental	Exponential		Mod Gompertz		Methane Production		
Experimental	k	Total CH ₄	k	Total CH ₄	lag	CH ₄ Yield (*) LCH ₄ g ⁻	Theoretical CH ₄ Yield (*)
SEL	(h-1)	(NmL)	(d-1)	(NmL)	(d)	1 COD	LCH ₄ g ⁻¹ COD
AD	0.0055	14.82	2.47	11.7	2,24	76.83	189.84
AD plus CBC	0.0072	29.39	3.45	26.93	0.0489	124.91	202.24
AD plus GAC	0.0119	39.62	6.28	38.48	-0.61	168.18	244.44

modified Gompertz equation : $P_{CH_4}(t) = P_{CH_4} \cdot exp\left\{-exp\left[\frac{k \cdot e}{P_{CH_4}}(\lambda - t) + 1\right]\right\}$ Equation (x)

Where $P_{CH_4}(t)$ (NL CH₄) is the methane produced at any time (t), P_{CH_4} maximum methane cumulated potential (mL CH₄), *k* is the maximum rate of methane production (NL·h⁻¹), λ is the lag phase time constant (h) and t is the incubation period (h).

Conclusion

- •ASR showed the capacity of removing $443.3 \pm 61.2 \text{ mgCOD } \text{g}^{-1}\text{ASR}$ (56% of CAG removal capacity) and $33.2 \pm 24.5 \text{ mg phenols } \text{g}^{-1}\text{ASR}$ (47% of GAC removal capacity) from the PHWW by adsorption.
- •The ASR adsorption capacity proved to be potentially interesting as an alternative to the GAC use as adsorbent when anaerobic digesting PHWW.
- Increasing COD removal efficiency from 54% (PHWW-AD) to 58% (PHWW-AD with ASR); increasing phenols removal efficiency from 36% (PHWW-AD) to 45% (PHWW-AD with ASR) and increasing Methane Yield from 77 mLCH4 gCOD⁻¹ (PHWW-AD) to 125 mLCH4 gCOD⁻¹ (PHWW-AD with ASR).

•Furthermore, the ASR addition to the PHWW-AD process has contributed to the increase in the modified Gompertz parameter of methane production maximum rate in 40%. It was also concluded that PHWW and ASR co-digestion can potentially reduce inoculum acclimatization periods to the recalcitrance compounds of the PHWW.

Acknowledgements

References

APHA, AWWA, WEF, 2005. Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC.

ANGELIDAKI, I. et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, v. 59, n. 5, p. 927–934, 2009.

BATTISTA, F. et al. The cascade biorefinery approach for the valorization of the spent coffee grounds. Renewable Energy, v. 57, p. 1203–1211, 2020.

BUCHANAN, I. D., JAMES, A. N. "Model Development for Horseradish Peroxidase Catalyzed Removal of Aqueous Phenol." Biotechnology and Bioengineering, v. 54, p. 251–61, 1997.

CHEN, H. et al. Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: Molecular and metabolic insights. Water Research, v. 168, p. 115199, 1 jan. 2020.

HALLERAKER, H. V.; BARTH, T. Quantitative NMR analysis of the aqueous phase from hydrothermal liquefaction of lignin. Journalof Analytical and Applied Pyrolysis, v. 151, p. 104919, 2020.

TOKIMOTO, T. et al. Removal of lead ions in drinking water by coffee grounds as vegetable biomass. Journal of Colloid and Interface Science, v. 281, n. 1, p. 56–61, 2005.

YANG, L. et al. Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass and Bioenergy, v. 86, p. 191–198, 2016.

YANG, L. et al. Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater. Bioresource Technology, v. 266, p. 349–356, 2018.

ZWIETERING, M. H. et al. Modeling of the bacterial growth curve. Applied and Environmental Microbiology, v. 56, n. 6, p. 1875–1881, 1990.

Figures References

Coffee Market Report - 2021. (n.d.). Coffee Statistics. Retrieved June 10, 2021, from https://www.coffee-statistics.com/

Dattatraya Saratale, G., Bhosale, R., Shobana, S., Banu, J.R., Pugazhendhi, A., Mahmoud, E., Sirohi, R., Kant Bhatia, S., Atabani, A.E., Mulone, V., Yoon, J.J., Seung Shin, H., Kumar, G., 2020. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2020.123800

Gu, X., Martinez-Fernandez, J.S., Pang, N., Fu, X., Chen, S., 2020. Recent development of hydrothermal liquefaction for algal biorefinery. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2020.109707