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Introduction

Source: Dattatraya Saratale et al., 2020.
Source: Coffee Statistics, 2021.

Figure 1. Evolution of global coffee consumption growth. Figure 2. Coffee cycle resume.



Introduction

Source: Gu et al., 2020.

Figure 3. Hydrothermal liquefaction abstract.

Figure 4. Sample of PHWW from HTL of SCG.



Purpose

This research aimed at the soluble organic content reduction
and the methane recovering from the post hydrothermal liquefaction
wastewater (PHWW) of SCG through the anaerobic digestion process
enhanced by the addition of activated carbon and biochar, the co-
product of the HTL process, as adsorbents.



Methods

Spent Coffe Grounds

Hydrothermal Liquefaction

Separation

PHWW

Bio-oil

Solid Residue

Activation Process

Third Exposition

PHWW

ASR GAC

Parr Reactor
275ºC
10 min

ASR

First and Second Exposition

Inoculum



Results – Adsorption

 ASR GAC 
 Efficiency removal (%) qe (mg. g-1) Efficiency removal (%) qe (mg. g-1) 

COD 7.3 ± 0.7 443.3 ± 61,2 12.1 ± 2.7 79.,9 ± 175.1 
Phenols 7.0 ± 5.2 33.2 ± 24,5 15.0 ± 6.2 71.0 ± 29.3 

  

%𝑅𝑅 = (Ci−Cf)
Ci

� 100 Equation (1); 𝑞𝑞𝑒𝑒 = (Ci−Cf)�V
m

Equation (2)

Whereas: %R is removal efficiency, qe is adsorption capacity (mg·g-1), ci is initial concentration (mg·L-1), cf is

final concentration (mg·L-1), v is nominal volume (L) and m is mass of adsorbent (g).

Table1. Adsorption capacity of ASR and GAC.



Results – Anaerobic Digestion

Studied AD 
condition 

Adsorbent 
addition 

COD (g⋅L-1) COD 
efficiency 

removal (%) 

Phenols (mg⋅L-1) Phenols 
efficiency 

removal (%) Affluent Effluent Affluent Effluent 

First 
Exposition No 1.43 ± 0.07 0.67 ± 0.01 53.06 66.9 ± 0.0 62.1 ± 5.3 7.18 

Second 
Exposition No 2.21 ± 0.01 1.21 ± 0.01 45.16 198.7 ± 30.0 165.1 ± 6.2 16.90 

Third 
Exposition 

No 

5.29 ± 1.69 

2.42 ± 0.26 54.24 

410.34 ± 15.28 

262.39 ± 9.13 36.05 

GAC 1.59 ± 0.04 69.84 156.18 ± 3.27 61.94 

ASR 2.23 ± 0.23 57.78 224.06 ± 10.57 45.40 

  

Table 2. COD and total phenols values measured during the incubation period. AD is anaerobic 
digestion, GAC is activated carbon and ASR is activated solid residue



Results – Methane production profile
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Figure 5. Methane production profile experimental 
data and exponential equation adjust.

Figure 6. Accumulated methane experimental 
potential and the theoretical methane potential 
(maximum).



Results – Gompertz parameters

 

Table 3. Curve fitting for methane profile production (Exponential and Modified Gompertz equations)                                                                          
and methane yields (experimental and theorical). 

Experimental 
set 

Exponential Mod Gompertz Methane Production 
k 

(h-1) 
Total CH4 

(NmL) 
k 

(d-1) 
Total CH4 

(NmL) 
lag 
(d) 

CH4 Yield (*) LCH4 g-

1 COD 
Theoretical CH4 Yield (*) 

LCH4 g-1 COD 
AD 0.0055 14.82 2.47 11.7 2,24 76.83 189.84 

AD plus CBC 0.0072 29.39 3.45 26.93 0.0489 124.91 202.24 
AD plus GAC 0.0119 39.62 6.28 38.48 -0.61 168.18 244.44 

modified Gompertz equation : 𝑃𝑃𝐶𝐶𝐶𝐶4 𝑡𝑡 = 𝑃𝑃𝐶𝐶𝐶𝐶4 � 𝑒𝑒𝑒𝑒𝑒𝑒 −𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘�𝑒𝑒
𝑃𝑃𝐶𝐶𝐶𝐶4

λ − t + 1 Equation (x)

Where 𝑃𝑃𝐶𝐶𝐶𝐶4 𝑡𝑡 (NL CH4) is the methane produced at any time (t), PCH4 maximum methane cumulated potential

(mL CH4), k is the maximum rate of methane production (NL·h-1), λ is the lag phase time constant (h) and t is the

incubation period (h).



Conclusion
•ASR showed the capacity of removing 443.3 ± 61.2 mgCOD g-1ASR  (56% of CAG 
removal capacity) and 33.2 ± 24.5 mg phenols  g-1ASR (47% of GAC removal capacity)  
from the PHWW by adsorption. 

•The ASR adsorption capacity proved to be potentially interesting as an alternative to the 
GAC use as adsorbent when anaerobic digesting PHWW. 

• Increasing COD removal efficiency from 54% (PHWW-AD) to 58% (PHWW-AD with 
ASR); increasing phenols removal efficiency from 36%  (PHWW-AD) to 45% (PHWW-AD 
with ASR) and increasing Methane Yield from 77 mLCH4 gCOD-1 (PHWW-AD) to 125 
mLCH4 gCOD-1 (PHWW-AD with ASR).  

•Furthermore, the ASR addition to the PHWW-AD process has contributed to the increase in 
the modified Gompertz parameter of methane production maximum rate in 40%. It was also 
concluded that PHWW and ASR co-digestion can potentially reduce inoculum 
acclimatization periods to the recalcitrance compounds of the PHWW.
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