An innovative low-temperature anaerobic system for high quality biogas production from municipal sewage

M. De Sanctis, V.G. Altieri, C. Di Iaconi

Email: marco.desanctis@ba.irsa.cnr.it

Research fields:

- Aerobic biofilters and granular reactors;
- Wastewater reuse in agriculture;
- Anaerobic digestion of lignocellulosic biomasses;
- Low-temperatura anaerobic processes.

Background

Aerobic process

VS

Anerobic process

Gain:

- High quality effluent
- Operation at environamental temperature

Drawbacks:

- Sludge production (~ 60% operting costs)
- Energy consumption (~ 50% aeration)

Low-strength wastewater

Gain:

- Biogas production
- Negligible sludge production
- No need for external aeration

Drawbacks:

- Lower effluent quality (suspended solids, nutrients)
- Energy consumption for thermal regulation (≥35°C)

High-strength wastewater

Current limitations to anaerobic processes in temperate climate regions for sewage

Anaerobic processes in **mesophilic** conditions: **30-40** °C

Sewage temperature range: 10-25 °C

1.16 kWh/m³ for 1 °C rise in temperature

Anaerobic processes in **psychrophilic** conditions:

- Limited hydrolysis of particulate organic matter
- Reduction of methanogenesis rate
- Higher liquid viscosity (< substrate diffusivity)
- Limited generation of biogas bubbles (low mixing)

Low-strength
High risk of biomass washout
wastewater

Overcome psychrophilic anerobic process limitations

Increase sludge retention time (SRT):

- Anaerobic membrane reactors (AnMBRs)
 Energy Fouling
- Anaerobic biofilter (AF): porous media
- Anaerobic sequencing batch reactors (ASBRs): increase substrate concentration (transient), variable settling phase and water mixing

Proposed approach

Anaerobic biofilter operating in sequential mode for treating sewage or low-strength wastewater

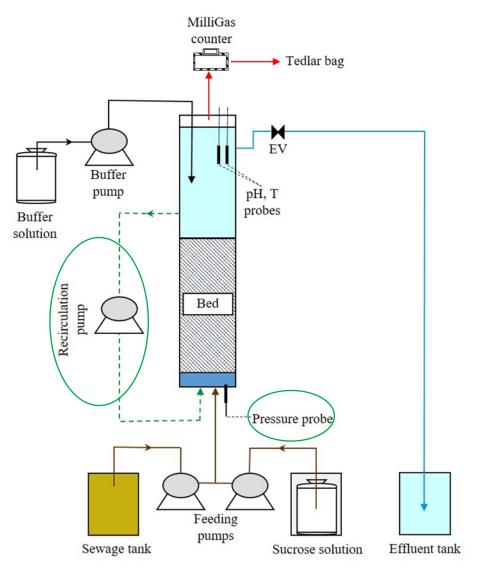
Plant scheme and operation

Sequential mode operation: filling/drawing; reaction; idle

Working volume: 26 L

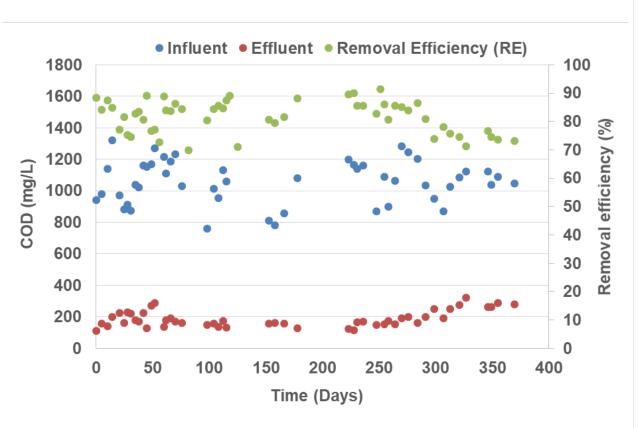
HRT: 45 h

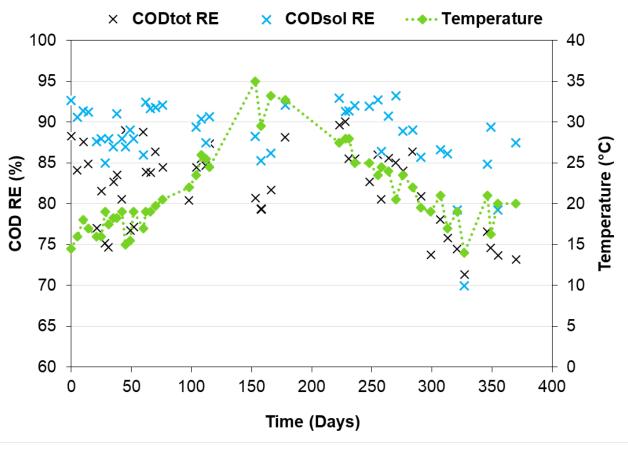
Up-flow velocity: 2 m/h


pH: ~ 7

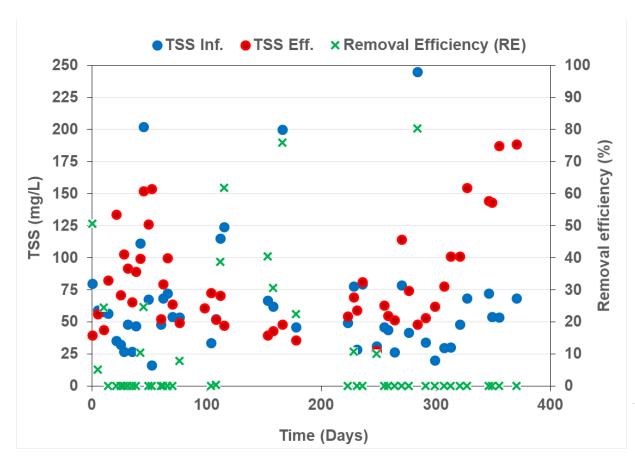
Temperature: environmental condition (14-30°C)

Wastewater composition: sewage + sucrose

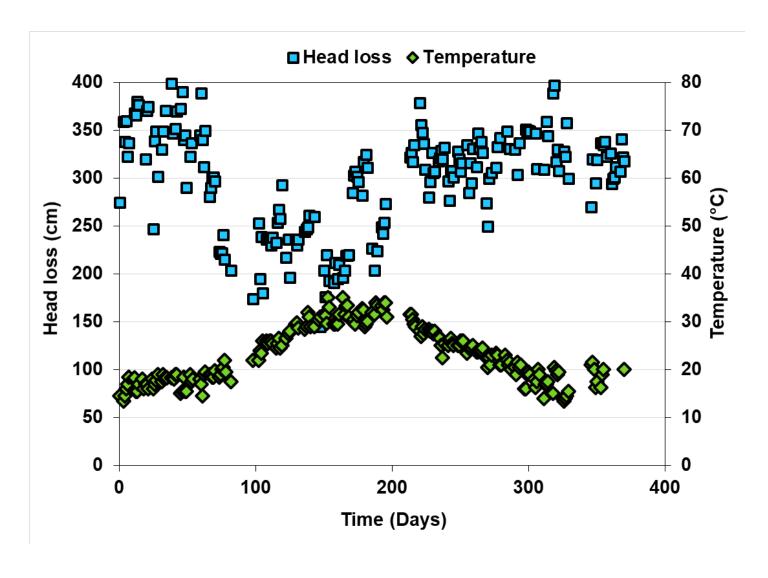

Average OLR: 0.6 kgCOD/m³·d


COD	TSS	TN	Р
1056 ± 137	64 ± 46	27 ± 9	5 ± 2

Results: COD



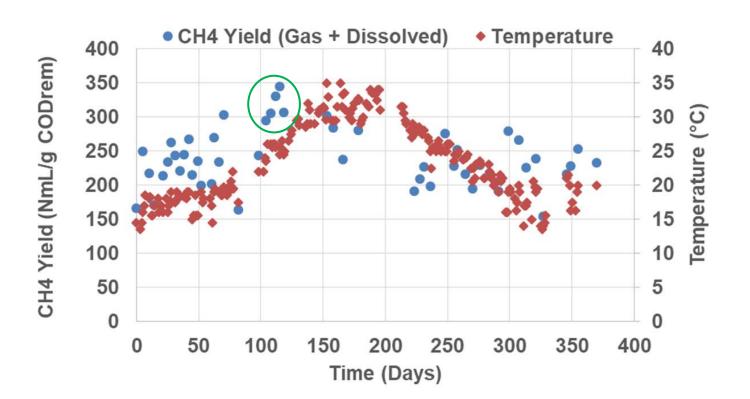
Results: TSS



Sewage and effluent TSS/VSS: 96%

Results: Biofilter porosity vs temperature

Cold seasons: Biomass, TSS, EPS accumulation in the biofilter


Shear forces increase

Balance head loss increase with biomass release into effluent

Results: Biogas production

Biogas composition (%)			
CH ₄	86 ± 5		
CO ₂	5 ± 2		
N ₂	5 ± 2		
O_2	2 ± 1		
H ₂	< 0.1		
H ₂ S	< 0.1		

Dissolved methane: 32-47 NmL/gCOD_{rem}

Conclusions...

- Seasonal temperature fluctuations did not inhibit microbial activity;
- Biofilter head losses and methane yield suggest accumulation and hydrolysis of particulate organic matter during cold and warm seasons, respectively;
- Due to its self-regulation mechanism, the plant does not require maintenance operations;
- The plant ensured high-quality biogas (86% CH₄) generation from low-strength wastewaters.

THANK YOU FOR THE ATTENTION ANY QUESTION?

Email: marco.desanctis@ba.irsa.cnr.it