

Experimental Investigation on Double Recycling of Asphalt Mixture for Pavement Applications

Di Wang – TU Braunschweig

Babak Jafari - TU Braunschweig

Augusto Cannone Falchetto – Aalto University

Chiara Riccardi – TU Braunschweig

Michael P. Wistuba – TU Braunschweig

Outline

Introduction

Materials and Experimentation

Results and Analysis

Summary and Conclusions

Introduction

Asphalt mixture is the main road paving material

 In Europe and north America more than 90% of roads are surfaced with asphalt mixture (NAPA & EAPA, 2011)

Asphalt mixtures:

 a particulate composites that contain aggregate particles of various sizes and shapes randomly distributed in a matrix made of asphalt bitumen/binder.

Introduction

Asphalt Bitumen/Binder

Aggregates

Asphalt Mixture

RE-USE AND RECYCLING OTABLE 4A. WARM MIX ASPHALT (WMA)

PRODUCTION OF WARM MIX ASPHALT IN THE PERIOD 2013 - 2019 (in million tonnes)

For this table Warm Mix Asphalt is defined as mixtures produced by using special techniques and/or additives to reduce the production temperature. The production temperature is between 100°C and 150°C

Country	All available Reclaimed Asphalt in 2019 in tonnes
Austria	1.800.000
Belgium	1.637.000

Croatia 210.000 More than

France	8.074.000
Germany	13.400.000
Great Britain	6.050.000
Hungary	105.000
Italy	9.500.000
Norway	1.173.000
Romania	612.500
Slovakia	165.600
Slovenia	150.000
Spain	1.486.000

Country	Asphalt in	Country	2013	2014	2015	2010	2017	2018	2019
,	2019 in	Austria	0,000	0,000	0,000	0,000	no data	no data	no data
	tonnes	Belgium	no data	no data	<0,05	no data	<0,050	0,100	0,200
		Croatia	0,000	0,040	0,060	0,060	no data	no data	no data
		Czech Republic	0,030	0,001	0,020	0,007	0,070	0,080	0,001
		Denmark	0,120	0,200	0,200	0,250	0,340	0,330	0,320
	1 000 000	Estonia	no data	no data	0,008	no data	no data	no data	no data
Austria	1.800.000	Finland	0,000	0,120	0,240	0,310	0,430	0,310	0,200
Belgium	1.637.000	France	3,550	4,023	4,552	4,324	3,824	3,728	4,305
Croatia	210.000	Great Britain	<1,000	<1,000	no data	<0,300	<1,000	<1,000	>1,000
	4.0	Hungary	0,020	0,038	0,070	0,208	0,210	0,000	0,180
More	e thar	Luxemburg	0,000	0,007	0,007	0,007*	no data	no data	no data
	_	Netherlands	0,060	0,133	0,100	0,100*	0,060	0,790	0,790*
France	8.074.000	Norway	0,380	0,540	0,592	0,502	0,869	1,339	1,740
Germany	13.400.000	Portugal	no data	0,100					
Great Britain	6.050.000	Slovakia	no data	no data	0,014	0,035	0,050	0,030	0,035
Hungary	105.000	Slovenia	0,000	0,000	0,000	0,000	0,050	0,002	no data
Italy	9.500.000	Spain	0,086	0,140	0,140	0,060	0,200	0,180	0,380
Norway	1.173.000	Sweden	0,500	0,700	0,700	0,700*	no data	no data	no data
Romania	612.500	Switzerland	0,870	0,388	no data	no data	no data	no data	0,500
Slovakia	165.600	Turkey	no data	no data	0,080	0,151	0,077	0,000	0.000
Slovenia	150.000								
Spain	1.486.000	USA	69,000	103,000	109,000	106,000	133,000	143,000†	72,000
S		Ontario-Canada	no data	0,750	0,900	0,750	no data	no data	no data
፲ 70 m	nillion	South Africa	0,150	0,150	0,200	0,200	no data	no data	no data
_ , 0 , ,									

EAPA (Asphalt in Figures, 2019)

Introduction

Asphalt bitumen/binders and asphalt mixtures are temperature susceptible materials. Fatigue and thermal cracking is a significant distress in asphalt pavements built in cold climates.

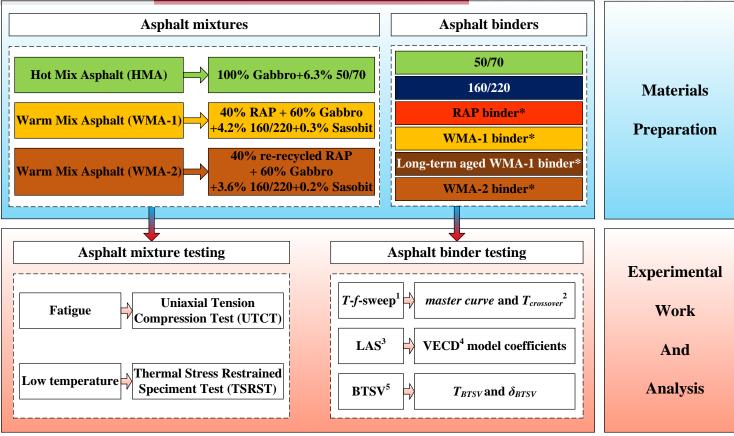
Low T Thermal Cracking

Intermediate T
Fatigue
Cracking

High T Permanent Deformation

After field aged or laboratory aged, the asphalt binders are getting harder and more stiffness; hence, the low temperature properties of asphalt mixture should be studied.

Research Objective


Technische
Universität
Braunschweig

Evaluate the possibility of using 40% re-recycled (double recycled) RAP together with Warm Mix Asphalt (WMA) technology.

Based on experimental works on:

- Asphalt mixtures
- Asphalt binders

Evaluation of Results and Discussion

Conclusions

WMA 1: WMA prepared with 40% RAP WMA 2: WMA prepared with 40% re-recycled RAP

T-f-sweep¹: Temperature frequency sWeep $T_{crossover}^{2}$: crossover temperature

LAS³: Linear Amplitude Sweep Test VECD⁴: Visco-Elastic Continuum Damage

BTSV⁵: Bitumen-Typisierung-Schnell-Verfahren (Binder-Fast-Characterization-Test)

binders with * are extracted from the corresponding mixtures

Materials and Experimentation

Materials

Table 1. Asphalt mixtures

	HMA	WMA-1	WMA-2
Recycled level	virgin	RAP	re-recycled RAP
Aggregates	100% Gabbro	60% Gabbro + 40% original RAP	60% Gabbro + 40 % re-recycled RAP
Binder type	50/70	4.2% 160/220	3.6% 160/220
Binder content [%]	6.3	6.2	6.2
Additives	-	0.3% Sasobit	
Density [g/cm ³]	2.56	2.54	
Air void [%]	1.7	1.5	

artificially aged WMA-1 mixture after 35h of PAV aging

Materials and Experimentation

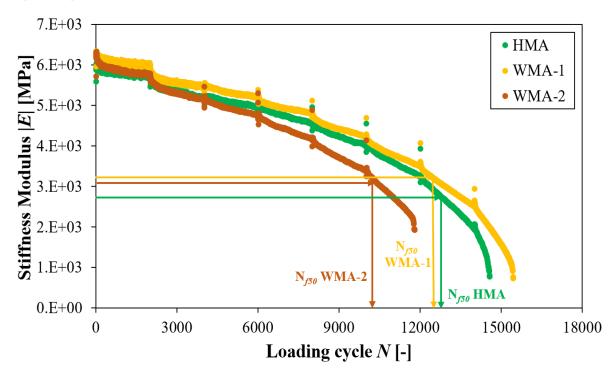
Experimental work for asphalt mixtures

- Fatigue-Uniaxial Tension Compression Test (UTCT) (Isailović et al., 2016)
- Thermal-Thermal Stress Restrained Specimen Test (TSRST) (EN 12697-46, 2012)

Experimental work for asphalt binders

- Rheological properties Temperature-frequency (t-f) sweep tests (EN 14770-08, 2012; Farrar et al., 2015)
- Fatigue properties Linear Amplitude Sweep (LAS) (AASHTO TP101, 2012)
- High temperature properties Binder-Fast-Characterization-Test (BTSV) (DIN 52050, 2018)

Isailović, I., Cannone Falchetto, A., Wistuba, M. P. (2016). *Energy dissipation in asphalt mixtures observed in different cyclic stress-controlled fatigue tests*. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials, 693-703. Springer, Dordrecht. Farrar, M., Sui, C., Salmans, S., Qin, Q. (2015). *Determining the low-temperature rheological properties of asphalt binder using a dynamic shear rheometer (DSR)*. Technical white paper FP08. No. DTFH61-07-D-00005, Fundamental Properties of Asphalts and Modified Asphalts, III.


Wang D, Jafari B, Cannone Falchetto A, Riccardi C, Wistuba MP | Investigation on the performance properties of asphalt mixtures prepared with RAP and WMA additives at binder and mixture levels | June 23-25, 2021 | 9

Results and Analysis – mixtures

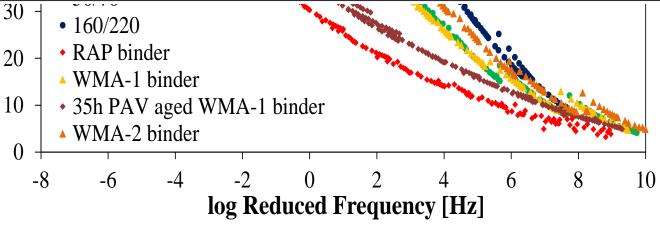
UTCT results

	HMA	WMA-1	WMA-2
$E_{\theta}[MPa]$	5813.925	6321.815	6145.089
N_{f50} [-]	12397	12684	10420
N _{macro} [-]	5732	6404	5810
ER_{max} [MPa]	4.04E+10	4.31E+10	3.74E+10
initial deformation [mm]	0.0093	0.0093	0.0102

TSRST results

	HMA	WMA-1	WMA-2
fracture temperature T_F [°C]	-23.3	-25.0	-27.3
thermal strength σ_{cry} [MPa]	4.764	4.775	4.632

Overall similar fatigue behavior and slightly better thermal cracking properties were found in mixtures prepared with re-recycled RAP and WMA technologies.

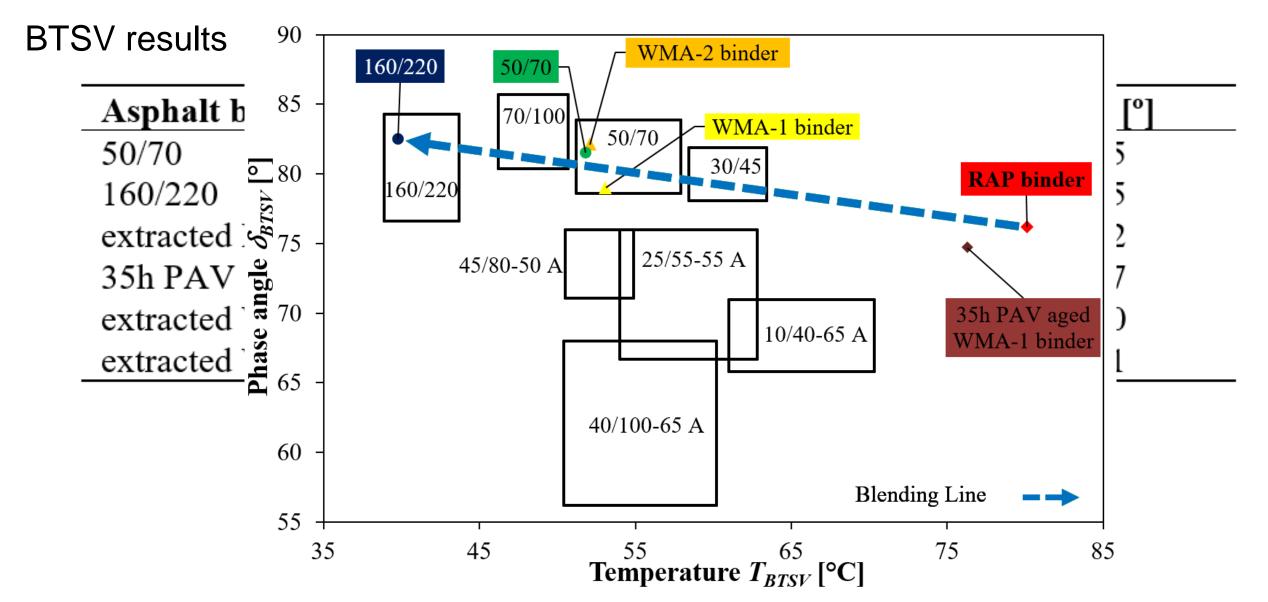

Results and Analysis – binder

Rheological properties

Asphalt Binders	G-R parameter	Crossover temperature paramete		
	Glover-Rowe (Pa)	$T_{\delta=45^\circ}$	G*(MPa)	
50/70	488.00	6.6	34.334	
160/220	1.43	-6.0	44.829	
RAP binder	691543.16	25.7	22.435	
WMA-1 binder	501.32	7.2	32.972	
35h PAV aged WMA-1 binder	621451.65	23.8	31.525	
WMA-2 binder	382.43	5.8	30.865	

Asphalt binders in **both WMA mixtures** present **similar rheological properties** to the target **virgin 50/70 binder**.

LAS results


	A	В	N_{f50}
50/70	1.36E+05	-2.844	10107 [2.5% strain level]
			1408 [5.0% strain level]
160/220	0.86E+05	-2.286	10454 [2.5% strain level]
160/220	0.80E±03	-2.280	2144 [5.0% strain level]
antenanta d XXXX (A. 1 bin dan	acted WMA-1 binder 1.35E+05 -3.1	2 101	7317 [2.5% strain level]
extracted wiviA-1 bilider		-3.181	807 [5.0% strain level]
extracted WMA-2 binder	1.39E+05	-3.428	8234 [2.5% strain level]
			1055 [5.0% strain level]

RAP binder failed at relative low strain level due to very high stiffness

Summary and Conclusions

The possibility of using a re-recycled RAP, up to 40%, in combination with the Warm Mix Asphalt (WMA) technology for designing surface layer mixture was experimentally investigated.

- Aged asphalt binder can be rejuvenated by using a very soft fresh binder, 160/220.
- Similar fatigue and low temperature behavior were observed for reference HMA and two WMA mixtures prepared with different generations of RAP.
- Similar rheological characteristics, including fatigue and high temperature properties, can be achieved for the extracted binder in both WMA mixtures compared with the reference virgin binder.

Name: Journal of Traffic and Transportation Engineering (English Edition)

Editors-in-chief: Prof. Richard Kim (North Carolina State University, USA)

Prof. Aimin Sha (Chang'an University, China)

Sponsored by: Chang'an University

CN: 61-1494/U ISSN: 2095-7564

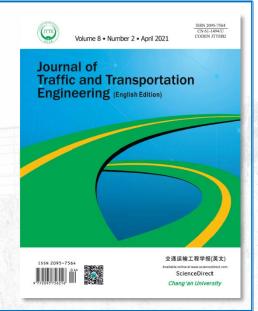
Started from: 2014

Issue: Bimonthly

Language: English

Publisher: KeAi /Elsevier

Indexed by: Ei, ESCI, Scopus, CSCD, CSTPCD, DOAJ


Email: jtte2014@126.com jtte@chd.edu.cn

Website: http://www.sciencedirect.com/science/journal/20957564 http://jtte.chd.edu.cn

Contact: Dr. Yuejie Han

LinkedIn: Yuejie Han **Tel.:** +86-29-8233 4384

ResearchGate: Yuejie Han Facebook & Twitter: jtte2014

Name: Journal of Road Engineering

Editors-in-chief: Prof. Aimin Sha (Chang'an University, China)

Prof. Fwa Tien Fang (National University of Singapore, Singapore; Chang'an University, China)

Sponsored by: Chang'an University

CN: 61-1520/U Issue: Quarterly

Start from: Late 2021 (expected)

Language: English

Contact: Dr. Yuejie Han

Email: jre2021@126.com jre@chd.edu.cn Tel.: +86-29-8233 4072

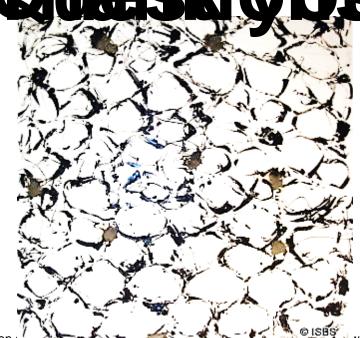
LinkedIn: Journal of Road Engineering

Facebook: Journal of Road Engineering

Twitter: jre2021 ResearchGate: Yuejie Han

Why publish your paper in JTTE and JRE:

- Prompt and rigorous peer-review, timely feedback
- Fast publication after acceptance
- No article processing charges


- Open access and free download worldwide
- Global readership and database coverage

