

Recycling of production residues from primary lithium batteries

8th International Conference on Sustainable Solid Waste Management

23-26 June 2021, Thessaloniki, Greece

Resource situation

- Lithium is considered one of the **essential metals** for future technologies.
- It is indispensable with regard to the storage of energy.
 - Electric vehicles, mobile electrical appliances (wireless applications).
- Continuous increase in lithium demand in the coming years
- LCE demand also increasing

2

СНЕМІЕ

- Production
 - 82.000 t Li or 436.525 t LCE
 - 55% Australia, 23% Chile, 10% China
- Global reserves
 - 21 Mio. T Li
 - 54% Chile, 18% Australia, 11% Argentina

Classified as **Critical Raw Material** by European Commission

HNI

CHEMIE

• Current Li recycling rate: < 1%

- Recycling processes mainly focused on spent secondary and primary energy storage systems
- Recycling processes aimed at the recovery of other valuable metals (Ni, Co) from LIB
- Lack of approaches for Li recovery from metallic production residues from battery production

4

CHEMIE

- Production residues are rich in Li (>60%) with high purity (> 99%)
 - Valuable Li source
- **\triangle** Energy release during leaching with H₂O (~32 MJ/kg Li) and H₂ generation

$$Li + H_2O \rightarrow LiOH + 0.5 H_2$$
 $\Delta_R H = -222.7 \text{ kJ/mol}$

 $Li_2O + 2H_2O \rightarrow 2LiOH + H_2O$ $\Delta_RH= -133.3 \text{ kJ/mol}$

Primary batteries production residues Li recovery

- Thermal oxidation of Li to Li₂O
 - \checkmark Avoiding H₂ generation and heat production
 - ✓ The energy release upon dissolution is reduced by 70 %
- Oxidation product dissolved in water
- LiOH·H₂O is obtained after crystallization

Development of a holistic process, which is suitable for maximizing the Li oxidation regardless the type of production residues from primary batteries

Primary batteries production residues Li recovery - Materials

Residue (1) •

Rolled lithium sheets with 0.1-1 mm thickness

99.89% Li

0.11% Na impurity

represents \geq 90% of production residues

© Chemical Technology Institute

• Residue (2)

Anode material in stainless steel wire 63.65% Li 21.03% Fe 15.32% Plastics

© Chemical Technology Institute

Material (1)

- Li oxidation optimized by using a Design of Experiments (DOE)
 - ✓ Optimum => global (instead of local)
 - Interaction evaluation
 - ✓ Model equation

© Chemical Technology Institute

2.5 Residence time [h] 0.5 2.01 Thickness [mm] 300 400 0.01 Temperature [° C]

8

CHEMIE

• 3³ Box Behnken design

Factors		Factor levels		
		-1	0	+1
А	Temperature [°C]	300	350	400
В	Thickness [mm]	0.01	1.01	2.01
С	Residence time [h]	0.5	1.5	2.5

Material (1)

Temperature

- ✓ Complete oxidation at $T = 400^{\circ}$ C
- ▲ Increasing temperature might interfere with the oxidation process by sintering of Li metal fragments
- Thickness

Thinner sheets are easier to oxidize

- ✓ Beneficial greater surface volume ratio
- Lower charge density
- Residence time
 - ✓ After half an hour oxidation is finished. It enables high throughput, which is favorable for an industrial application

© Chemical Technology Institute

Material (1)

• Model equation

 $Li-conversion~[\%] = 932.894 - 5.417 \cdot A - 104.905 \cdot B + 6.869 \cdot C + 0.008 \cdot A^2 + 0.211 \cdot A \cdot B + 11.546 \cdot B^2$

Chemical Technology Institute

Material (2)

[©] Chemical Technology Institute

Effect of temperature/time on Li-content using 0.3 g $\,$

Effect of the sample mass on Li-content at 400 $^{\circ}\text{C}$

CHEMIE

Material (2)

- © Chemical Technology Institute
- ▲ Temperature is the single factor that shows significant effect on the target value

Material (2)

- Optimized oxidation conditions obtained by Material (1) applied on Material (2)
 - Optimal conditions 400 °C I 2.0 mm I 2.5 h
- Total oxidation: 93.08 ± 0.43%

Isolation of Li₂CO₃

- 85.5 ± 3.0% Li after a single precipitation step with CO₂
- Product characterization 96.72 ± 0.23% Li₂CO₃
 3.0 ± 0.23% LiOH·H₂O
 < 0.1% Na₂CO₃

[©] Chemical Technology Institute

Primary batteries production residues Conclusions

• Conditions of Material (1) suitable for primary batteries production residues

Holistic approach!

• Optimal conditions for oxidation primary batteries production residues

400 °C I 2.0 mm I 2.5 h

- Recovery of 85.5% Li by single precipitation step
 - Li₂CO₃ as a product with high purity (≥ 96%)

Thank you for your attention !

Vielen Dank für Ihre Aufmerksamkeit!

M.Sc. Martin Kahl martin.kahl@chemie.tu-freiberg.de

Dr. Ing. Sandra Pavón sandra.pavon-regana@chemie.tu-freiberg.de

Prof. Dr. Martin Bertau martin.bertau@chemie.tu-freiberg.de

SPONSORED BY THE

 100
 10
 1
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10