

## CO<sub>2</sub> capture and storage by natural zeolites

<u>M. Dosa<sup>1</sup></u>, M. Cavallo<sup>2</sup>, N. G. Porcaro<sup>2</sup>, F. C. Bonino<sup>2</sup>, V. Crocellà<sup>2</sup>, M. Piumetti<sup>1</sup> D. Fino<sup>1</sup>

<sup>1</sup>Department of Applied Science and Technology, Polytechnic of Turin, Turin, 10129, Italy.

<sup>2</sup>Department of Chemistry, NIS and INSTM reference Centers, University of Turin, Turin, 10135, Italy.



olitecnico





#### Introduction



In the last decades, the valorization of the solid organic waste has received growing interest.





The waste treatment has increased the attention towards a new renewable energy carrier: the biogas.







Since the  $CO_2$  amount is not negligible, it must be captured because it is one of the significant contributors to the greenhouse effect.



#### Introduction



Over the years, several technologies were developed to abate  $CO_2$ . However, the <u>actual capture systems are not low-cost</u>, and the research is focusing on other possible technologies.



In this scenario, **zeolites** could be an **interesting solution**. These materials are characterized by  $[SiO_4]$  and  $[AIO_4]$ <sup>-</sup> with **three-dimensional structure**. Thanks to this structural conformation, the zeolite can create cavities with <u>different pores</u> dimensions: <u>micropores</u>, <u>mesopores</u> (2 nm < d < 50 nm) or <u>macropores</u> (d > 50 nm).





A material with these physico-chemical properties could have application for several environmental applications, like water, soil and air decontamination.

#### Introduction

- Among the zeolites, the natural ones have received interest in academia and industry because of their potential applications and low-cost compared with the commercial (synthetic) zeolites.
- In particular, the clinoptilolite is the most used natural zeolite. This material can adsorb CO<sub>2</sub> by Van der Waals forces, and the modification of the chemical composition (i.e., by means ion exchange method) may increase the CO<sub>2</sub> adsorption capacity.
- It was demonstrated that the capacity of CO<sub>2</sub> removal by clinoptilolite follows the following orders: Cs<sup>+</sup>> Rb<sup>+</sup>> K<sup>+</sup>> Na<sup>+</sup>> Li<sup>+</sup> and Ba<sup>2+</sup>> Sr<sup>2+</sup>> Ca<sup>2+</sup>> Mg<sup>2+</sup>.



The crystal structure of clinoptilolite-Na (Agoura, California) with cation positions from the refinement of Koyama and Takéuchi (1977). Typically clinoptilolite contains 4 to 7 cations per unit cell (Deer et al. 2004).



#### **Materials and methods**



Clinoptilolite powder was provided by Zeolado (Greece)

#### The clinoptilolite structure by the International Zeolite Association



#### N<sub>2</sub> Physisorption at -196°C

| N <sub>2</sub> Physisorption Property              | Clinoptilolite |  |  |
|----------------------------------------------------|----------------|--|--|
| BET Surface Area (m <sup>2</sup> g <sup>-1</sup> ) | 37             |  |  |
| Total Volume (cm <sup>3</sup> g <sup>-1</sup> )    | 0.14           |  |  |

#### **EDS Analysis**

Compositions per unit cell. Elemental concentrations given as no. of atoms/unit cell.

| Elements | Cation Content / mmol g <sup>-1</sup> |  |
|----------|---------------------------------------|--|
| Si       | 23.55                                 |  |
| AI       | 4.92 SI/AI = 5                        |  |
| Fe       | 0.20                                  |  |
| Ca       | 0.50                                  |  |
| Mg       | 0.32                                  |  |
| Na       | 0.12                                  |  |
| К        | 0.78                                  |  |

Theoretical clinoptilolite formula (NaKCa)<sub>4</sub>(Al<sub>6</sub>Si<sub>30</sub>O<sub>72</sub>)·24H<sub>2</sub>O

#### **FESEM Images**



#### **Experimental set-up**





#### **Adsorption tests**

- The CO<sub>2</sub> capture was performed at different temperatures, in the range 25 150 °C. <u>Before the tests</u>, the <u>clinoptilolite</u> was <u>pretreated</u> at 400 °C for 2 h with N<sub>2</sub> flow.
- The results are reported in Figure 1 and Table 1. As a whole, the CO<sub>2</sub> adsorption capacity decreases as the temperature increases (Figure 1A).
- The clinoptilolite presents good adsorption capacity at low temperature (2.2 mmol<sub>CO2 adsorbed</sub> g<sup>-1</sup><sub>clino</sub>). Moreover, the clinoptilolite is stable for two consecutive runs (Figure 1B).

Table 1. CO<sub>2</sub> absorbed (mmol<sub>CO2 adsorbed</sub>) over the clinoptilolite mass at 25, 60, 90 and 150 °C.

| Temperature (°C)                                                                          |     | 60  | 90  | 150 |
|-------------------------------------------------------------------------------------------|-----|-----|-----|-----|
| CO <sub>2</sub> adsorbed (mmol <sub>CO2 adsorbed</sub> g <sup>-1</sup> <sub>clino</sub> ) | 2.2 | 1.8 | 1.3 | 0.7 |



**Figure 1.** A)  $CO_2$  capture over the time at different temperatures and B) stability tests (at 25 °C) for two consecutive runs on clinoptilolite powder

#### **Adsorption tests**

Moreover, the clinoptilolite was compared with other  $CO_2$  capture materials, as the hydrotalcite and the Linde Type A (LTA) zeolites.

zeolite LTA

Cation Site

LTA structure, Takehito N. et al. 2001

• Si or Al

 $\begin{array}{c} & Metallic cations \\ M^{\pm} \text{ or } M^{\Xi^{\pm}} \\ M^{\bullet} & Q \\ \end{array} \\ \begin{array}{c} & M^{\bullet} \\ M^{\bullet} \end{array} \\ \begin{array}{c} & M^{\bullet} \\ (M^{\bullet})_{(\Delta m)}, nH_2O \\ \end{array} \\ \begin{array}{c} & Lamellar \\ M^{\bullet^{\bullet}} (l_{(\Delta m)}M^{\bullet^{\bullet}} x(OH)_{(C)})^{\bullet^{\bullet}} \end{array} \\ \end{array}$ 

O OH

Hydrotalcite structure, Salomao et al., 2013

- At **25** °C, the most performing catalysts are **Na- CaLTA samples**, respectively, **3.1** and **3.3** mmol<sub>CO2 adsorbed</sub> **g**<sup>-1</sup><sub>adorbent</sub>.
- However, at a higher temperature (150 °C), the most interesting catalyst is clinoptilolite (0.7 mmol<sub>CO2</sub> adsorbed g<sup>-1</sup>adorbent), and the worst performances are represented by the hydrotalcite (0.4 mmol<sub>CO2</sub> adsorbed g<sup>-1</sup>adorbent).



**Figure 2.** A)  $CO_2$  capture at 25 °C, B) 60 °C, C) 90 °C and D) 150 °C over the time.



#### Conclusions

 In conclusion, the clinoptilolite is an interesting (sustainable) material that can be used for the CO<sub>2</sub> capture at relatively high temperature since it is less affected by the variation of the temperature, compared to LTA-type zeolite and hydrotalcite.

## **Future perspectives**



| Sample         | Temperature<br>(°C) | CO <sub>2</sub> adsorbed<br>(mg/g) | CO <sub>2</sub> adsorbed<br>(mmol/g) | Pressure losses<br>(mBar) |
|----------------|---------------------|------------------------------------|--------------------------------------|---------------------------|
| Clinoptilolite | 25                  | 79                                 | 1.8                                  | 4                         |
|                | 150                 | 36                                 | 0.8                                  | 10                        |

## **Future perspectives**



CO<sub>2</sub> adsorption over LTA-materials (cartridge tests).



Synthesis and characterizations of new materials for  $CO_2$  capture: hierarchical systems (powder and cartridge tests).





#### Acknowledgment

The study reported in this work is part of the research project SATURNO "Scarti organici e Anidride carbonica Trasformati in carbURanti, fertilizzanti e prodotti chimici; applicazione concreta dell'ecoNOmia circolare" funded by "Piattaforma Tecnologica Bioeconomia-POR FESR 2014-2020 Region Piedmont" and carried out in collaboration with Università di Torino, Turin, Italy.

Support of Zeolado in providing the clinoptilolite used through the investigation is gratefully acknowledged.



# Thank you for your kind attention

Any questions?

Melodj Dosa, PhD Research Fellow e-mail: melodj.dosa@polito.it

Department of Applied Science and Technology Polytechnic of Turin



$$V_{CO2adsorbes} = \int_{t_0 + \Delta t}^{t_f} \left( 1 - \frac{C_{CO2out}}{C_0} \right) d(Q_{out}t) \tag{1}$$

$$Q_{out} = Q_{in} \left( \frac{1 - y_{CO2}}{1 - y_{CO2} \frac{C_{CO2_{out}}}{C_0}} \right)$$

(2)

(3)



 $n_{CO2_{out}}(t) = \frac{y_{CO2}PV}{RT}$ 

Adsorption capacity:  $\alpha_{zeolite} = \frac{n_{CO2_{adssorbed}}}{m_{zeolite}}$ 

#### Where:

- *C*<sub>CO2</sub> is the vol. concentration of CO<sub>2</sub> recorded by the analyzer;
- $Q_{out} \left[\frac{m^3}{s}\right]$  is the vol. flux out from the reactor;
- $y_{CO2}$  CO<sub>2</sub> molar ratio in the reactor inlet;
- $C_0$  is the CO<sub>2</sub> concentration in the inlet;
- $\Delta t [s]$  is the delay time of the instrument.

|                                                       | NaClino | CaClino | Hydrotalcite |
|-------------------------------------------------------|---------|---------|--------------|
| SSAª<br>(m²g⁻¹)                                       | 43      | 48      | 282          |
| Pores<br>volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) | 0.24    | 0.21    | 0.22         |
| t-plot<br>(cm <sup>3</sup> g <sup>-1</sup> )          | 0.006   | 0.006   | 0.01         |

<sup>a</sup> Evaluated by BET method

Effect of the average particle's dimensions



| Clinoptilolite                  | Temperature<br>(°C) | CO <sub>2</sub><br>adsorbed<br>(mg/g) | CO <sub>2</sub><br>adsorbed<br>(mmol/g) |
|---------------------------------|---------------------|---------------------------------------|-----------------------------------------|
| <i>Clino01</i><br>(0.15mm)      | 20                  | 99                                    | 2.2                                     |
| <i>Clino02</i><br>(0.21-0.50mm) | 20                  | 58                                    | 1.3                                     |
| <i>Clino05</i><br>(0.50-0.90mm) | 20                  | 51                                    | 1.2                                     |
| <i>Clino09</i><br>(0.90-2.50mm) | 20                  | 47                                    | 1.1                                     |
| <i>Clino20</i> (2.00-3.15mm)    | 20                  | 43                                    | 1                                       |

Cartridge dimensions

