

8th International Conference on Sustainable Solid Waste Management

24 June 2021

Effect of char recirculation in fixed bed gasifiers: experimental and modelling analysis

Francesco Patuzzi¹, Daniele Antolini¹, Stergios Vakalis², Marco Baratieri¹

¹ Faculty of Science and Technology, Free University of Bozen-Bolzano, Italy ² University of the Aegean, Mytilene, Greece

Small-scale biomass gasification in EU

Source: 2018 - IEA bioenergy Task 33

F. Patuzzi – Effect of char recirculation in fixed bed gasifiers: experimental and modelling analysis

Possible utilization pathways

Many possible application are reported in the literature

- for co-firing in power plants
- as soil improver
- as adsorbent
- as catalytic support

THE AIM OF THIS WORK is to investigate the effect of

recirculating char

in fixed bed gasification systems

Open-top gasifier

Fixed bed reactor - Nominal size: 4 kg_{biom}/h

Open-top gasifier

Measured quantities and characterized properties

- Mass IN
- Mass OUT
- Charge and discharge time
- Secondary air mass flow rate (mass flow controller)
- Producer gas flow rate (differential pressure over a calibrated orifice)
- Gas composition (microGC)

Derived quantities and process parameters

- Biomass and char mass flow rates
- Total air IN (nitrogen balance)
- Equivalence Ratio
- Energy fluxes
- Cold Gas Efficiency

Fuel characterization

Standard spruce pellet EN plus A1 – 6 mm diameter

- moisture content
- ash content
- elemental analysis C,H,N,S (Vario MACRO Cube, Elementar)
- HHV LHV (C 200 IKA)

Moisture	Ash	С	Н	Ν	S	Ο	LHV
[%wt _{ar}]		[%wt _{dry}]					[MJ/kg _{dry}]
7.1	0.3	49.8	5.6	0.1	0.4	43.8	16.9

Study cases

	char yield / recirc. share	2 nd air injected	Blower SP	ER (when the fuel is only biomass)
	[%]	[NLPM]	[Hz]	[-]
Case A	~ 10	10	40	< 0.25
Case B	~ 5	26	40	~ 0.25

Sub-cases

- **0**: fuel IN = standard pellet (biomass)
- **R**: fuel IN = standard pellet (biomass) + char (produced in the corresponding sub-case 0)

Char characterization

Char characterization

• higher ash content \rightarrow higher conversion

Mass flow rates

- producer gas: almost constant
- char: increases

Gas composition

Gas composition

Overall effect of char recirculation

• Overall char yield: decreases

$$Y_{char} = \frac{\dot{m}_{char \ OUT}}{\dot{m}_{biom \ IN} + \dot{m}_{char IN}}$$
$$Y_{char \ NoR} = \frac{\dot{m}_{char \ OUT} - \dot{m}_{char IN}}{\dot{m}_{biom \ IN}}$$

Overall effect of char recirculation

- Overall char yield: decreases
- Overall CGE: increases in case B (process conditions better tuned up)

2nd air modulation

• Can the process conditions be further tuned up to optimize the process for char recirculation?

	char yield / recirc. share	2 nd air injected	Blower SP	ER (when the fuel is only biomass)
	[%]	[NLPM]	[Hz]	[-]
Case C	3 - 10	14 - 32	40	0.19 - 0.25

2nd air modulation

2nd air modulation

Char yield

2nd air modulation

Gas composition

2nd air modulation

Cold gas efficiency

Modelling approach

- based on a thermodynamic solidgas equilibrium approach (Gibbs energy minimization method)
- overcomes the issues of the classical equilibrium strategy (fixed temperature and pressure)
- introduction of an adiabatic gasification temperature, defined in analogy to the concept of adiabatic flame temperature for the combustion process.

Freie Universität Bozen unibz

- LOAD MODULATION (LM)
- CHAR RECIRCULATION (CR)
- TORREFIED PELLETS (TP)
- BARK AND CHIPS (BC)

www.thessaloniki2021.uest.gr

THESSALONIKI2021

THESSALONIKI2021

www.thessaloniki2021.uest.gr

THESSALONIKI2021

www.thessaloniki2021.uest.gr

Long term effect of char recirculation

Conclusions

Char recirculation:

- Allows a significant reduction of the overall char yield (in the order of 40 60 %)
- Do not significantly impact the process if this is well tuned up
 - Gas composition and LHV remain almost constant
 - CGE slightly decreases (as per the producer gas flow rate)
 - Considering the overall effect, CGE slightly increases
- Secondary air modulation can make even more feasible char recirculation
- An asymptotic condition is reached after a certain number of recirculation cycles, as confirmed by both modelling and experimental results

Open question

• What is the effect of granulometry?

(this worked well, but the char particles were still maintaining the original pellet shape)

Acknowledgments

This work was funded by

in the frame of the project CHAR-RCC:

"CHAR Re-Circulation for improving the Conversion yields in fixed-bed biomass gasification systems"

24 June 2021

Thank you very much for your kind attention!

francesco.patuzzi@unibz.it

visit us @ bnb.groups.unibz.it

