Effect of char recirculation in fixed bed gasifiers: experimental and modelling analysis

Francesco Patuzzi 1, Daniele Antolini 1, Stergios Vakalis 2, Marco Baratieri 1

1 Faculty of Science and Technology, Free University of Bozen-Bolzano, Italy
2 University of the Aegean, Mytilene, Greece
Small-scale biomass gasification in EU

Size of the plants < 0.5 MW_{el}
Number of installed plants > 1000

Application: CHP (feed in tariff)
Technology: fixed bed gasifiers

Source: 2018 - IEA bioenergy Task 33
The South Tyrol (Südtirol) region

Area: 7400 km²
Population: 511750 ab.
42% forest

46 plants in operation
~ 1300 ton/year of char
150 €/ton for disposal
Possible utilization pathways

Many possible application are reported in the literature

- for co-firing in power plants
- as soil improver
- as adsorbent
- as catalytic support

THE AIM OF THIS WORK is to investigate the effect of recirculating char in fixed bed gasification systems
Open-top gasifier

Fixed bed reactor - Nominal size: 4 kg_{biom}/h
Open-top gasifier

- 1st air
- 2nd air
- unburned biomass
- control level
- gasification
- reactive char
- char combustion
- reactive char
- non reactive char

Components:
- Reactor
- Cyclone
- Scrubber
- Moisture trap
- Flare
- Bypass valve
- Fabric filter
- Char tank
- Water tank
- Blower
- Orifice plate
Measured quantities and characterized properties

- Mass IN
- Mass OUT
- Charge and discharge time
- Secondary air mass flow rate (mass flow controller)
- Producer gas flow rate (differential pressure over a calibrated orifice)
- Gas composition (microGC)

Derived quantities and process parameters

- Biomass and char mass flow rates
- Total air IN (nitrogen balance)
- Equivalence Ratio
- Energy fluxes
- Cold Gas Efficiency
Fuel characterization

Standard spruce pellet EN plus A1 – 6 mm diameter

- moisture content
- ash content
- elemental analysis C,H,N,S (Vario MACRO Cube, Elementar)
- HHV - LHV (C 200 - IKA)

<table>
<thead>
<tr>
<th>Moisture [%wt_{ar}]</th>
<th>Ash [%wt_{dry}]</th>
<th>C [%wt_{dry}]</th>
<th>H [%wt_{dry}]</th>
<th>N [%wt_{dry}]</th>
<th>S [%wt_{dry}]</th>
<th>O [%wt_{dry}]</th>
<th>LHV [MJ/kg_{dry}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>0.3</td>
<td>49.8</td>
<td>5.6</td>
<td>0.1</td>
<td>0.4</td>
<td></td>
<td>43.8</td>
</tr>
</tbody>
</table>
Study cases

<table>
<thead>
<tr>
<th></th>
<th>char yield / recirc. share [%]</th>
<th>2nd air injected [NLPM]</th>
<th>Blower SP [Hz]</th>
<th>ER [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>~ 10</td>
<td>10</td>
<td>40</td>
<td>< 0.25</td>
</tr>
<tr>
<td>Case B</td>
<td>~ 5</td>
<td>26</td>
<td>40</td>
<td>~ 0.25</td>
</tr>
</tbody>
</table>

Sub-cases
- **0**: fuel IN = standard pellet (biomass)
- **R**: fuel IN = standard pellet (biomass) + char (produced in the corresponding sub-case 0)
Char characterization

Char composition - Carbon content

Char composition - Ash content

Case A0 Case AR Case B0 Case BR
Char characterization

- higher ash content \rightarrow higher conversion
Mass flow rates

• producer gas: almost constant
• char: increases
Gas composition

- CO
- CO2
- H2
Gas composition
Overall effect of char recirculation

- Overall char yield: decreases

Mathematical expressions:

\[
Y_{\text{char}} = \frac{\dot{m}_{\text{char \ OUT}}}{\dot{m}_{\text{biom \ IN}} + \dot{m}_{\text{char \ IN}}}
\]

\[
Y_{\text{char \ NoR}} = \frac{\dot{m}_{\text{char \ OUT}} - \dot{m}_{\text{char \ IN}}}{\dot{m}_{\text{biom \ IN}}}
\]
Overall effect of char recirculation

- Overall char yield: decreases
- Overall CGE: increases in case B (process conditions better tuned up)

\[
CGE = \frac{\dot{m}_{\text{gas}} \cdot LHV_{\text{gas}}}{\dot{m}_{\text{biom IN}} \cdot LHV_{\text{biom IN}} + \dot{m}_{\text{char IN}} \cdot LHV_{\text{char IN}}}
\]

\[
CGE_{\text{NoR}} = \frac{\dot{m}_{\text{gas}} \cdot LHV_{\text{gas}}}{\dot{m}_{\text{biom IN}} \cdot LHV_{\text{biom IN}}}
\]
2nd air modulation

- Can the process conditions be further tuned up to optimize the process for char recirculation?

<table>
<thead>
<tr>
<th>char yield / recirc. share</th>
<th>2nd air injected</th>
<th>Blower SP</th>
<th>ER (when the fuel is only biomass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[%]</td>
<td>[NLPM]</td>
<td>[Hz]</td>
<td>[-]</td>
</tr>
<tr>
<td>Case C</td>
<td>3 - 10</td>
<td>14 - 32</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.19 - 0.25</td>
</tr>
</tbody>
</table>
2nd air modulation

Main effects of increasing 2nd air flow rate
2nd air modulation

Char yield
2nd air modulation

Gas composition

![Graphs showing the effect of 2nd air modulation on gas composition.](image-url)
2nd air modulation

Cold gas efficiency
Modelling approach

- based on a **thermodynamic solid-gas equilibrium** approach (Gibbs energy minimization method)
- overcomes the issues of the classical equilibrium strategy (fixed temperature and pressure)
- introduction of an **adiabatic gasification temperature**, defined in analogy to the concept of **adiabatic flame temperature** for the combustion process.
Model calibration

\[
\text{correction} = \frac{\Delta H_{\text{OUT}}}{\Delta H_{\text{IN}}}
\]
Four different exp. campaigns
- LOAD MODULATION (LM)
- CHAR RECIRCULATION (CR)
- TORREFI ED PELLETS (TP)
- BARK AND CHIPS (BC)

Model calibration

Adiabatic formulation

Enthalpy, H

Correction formula:
\[\text{correction} = \frac{\Delta H_{\text{OUT}}}{\Delta H_{\text{IN}}} \]

Reactants

temperature

Gasification products

Comb. products

\(\Delta H_{\text{IN}} \)

\(\Delta H_{\text{OUT}} \)

Four different exp. campaigns

- LOAD MODULATION (LM)
- CHAR RECIRCULATION (CR)
- TORREFIED PELLETS (TP)
- BARK AND CHIPS (BC)

Calibration to match the experimental CGE

\[
\text{correction} = \frac{\Delta H_{\text{OUT}}}{\Delta H_{\text{IN}}}
\]
Four different exp. campaigns
- LOAD MODULATION (LM)
- CHAR RECIRCULATION (CR)
- TORREFIED PELLETS (TP)
- BARK AND CHIPS (BC)

Calibration to match the experimental CGE

correction = \frac{\Delta H_{\text{OUT}}}{\Delta H_{\text{IN}}}

Adiabatic formulation

char yield [%]

Model calibration

CGE [%]

Correlation plots for different datasets (LM, CR, TP, BC):
Long term effect of char recirculation
Conclusions

Char recirculation:

• Allows a significant reduction of the overall char yield (in the order of 40 - 60 %)
• Do not significantly impact the process if this is well tuned up
 • Gas composition and LHV remain almost constant
 • CGE slightly decreases (as per the producer gas flow rate)
 • Considering the overall effect, CGE slightly increases
• Secondary air modulation can make even more feasible char recirculation
• An asymptotic condition is reached after a certain number of recirculation cycles, as confirmed by both modelling and experimental results

Open question

• What is the effect of granulometry?
 (this worked well, but the char particles were still maintaining the original pellet shape)
Acknowledgments

This work was funded by

unibz

in the frame of the project **CHAR-RCC**: “CHAR Re-Circulation for improving the Conversion yields in fixed-bed biomass gasification systems”
24 June 2021

Thank you very much for your kind attention!

francesco.patuzzi@unibz.it

visit us @
bnb.groups.unibz.it