

ALMA MATER STUDIORUM Università di Bologna Furnace injection of dolomitic sorbent as retrotting option for HCI and SO₂ removal in waste-to-energy plants

Alessandro DAL POZZO, Sarah CAPECCI, Valerio COZZANI

Laboratory of Industrial Safety and Environmental Sustainability University of Bologna (Italy)

Acid pollutants and waste-to-energy

Acid gases (HCI, SO₂) are typical pollutants released by waste combustion, stemming from the CI and S content in the waste.

The recent revision of the Best Available Techniques for waste incineration issued at the end of 2019 has imposed **ambitious targets of acid gas removal efficiency** and the environmental permitting will soon adopt the new prescriptions.

As a consequence, existing WtE plants are increasingly **retrofitting** their flue gas cleaning lines introducing **multi-stage treatment processes** for the removal of acid pollutants.

State-of-the-art single system for acid gas removal

Currently, the most common method for acid gas removal is their neutralization by in-duct injection of dry powdered **sodium bicarbonate** and the subsequent filtration of solid reaction products

A simple retrofitting option: furnace sorbent injection

Installation of an additional pre-treatment stage directly in the combustion chamber **Reactant:** calcined dolomite

Advantage of the two-stage configuration

The two-stage treatment configuration offers a <u>degree of freedom</u> in process control.

The same overall pollutant removal efficiency can be achieved with different repartitions of removal between stages.

A proper selection of the repartiton of removal between stages can minimize the costs (and the indirect environmental impacts) of treatment, while keeping the same emission level of HCI and SO₂ at stack.

Aim of the study

Which is the optimal feed rate of dolomite that minimizes the operating costs in a two-stage acid gas removal system?

- o conducting an experimental campaign of dolomite acid gas removal efficiency at plant scale
- o modelling the performance of both dolomite and bicarbonate to identify the optimal feed rate
- o verifying in the real plant if the identified optimal feed rate does achieve the expected benefits

Test run protocol for the assessment of dolomite performance

- Constraint: single measurement of gas composition downstream of the furnace
- «On-off» test: incremental steps of constant feed rate, alternated with stop periods
- The acid gas concentration measured during the stop period is considered representative of the raw flue gas composition

Extracting data from test runs

ALMA MATER STUDIORUM Università di Bologna

Modelling data from test runs

A semi-empirical model is adopted for the interpretation of the acid gas removal data obtained with test runs:

Dal Pozzo et al., J. Haz. Mater. 2020, 394, 122518.

Modelling bicarbonate performance

The same approach can be also used to model bicarbonate performance:

- Upstream and downstream measurement of gas composition (P1 + sampling at P2)
- **Protocol:** stepwise variation of bicarbonate feed and measurement of removal efficiency

EXAMPLE OF TEST RUN

Use of the model to identify the optimal operating point

Once the acid gas removal performance of the calcined dolomite is characterized quantitatively, we can answer the question: which is the optimal feed rate of dolomite in a two-stage dolomite + bicarbonate system?

- the real plant adopts a fixed feed rate of 80 kg/h of dolomite (typical operating point of the plant)
- simulations with the model suggest that a small cost reduction (up to 10% for $C_{HCl,in} = 600 \text{ mg/Nm}^3$) can be obtained by lowering the amount of dolomite fed to the system

Test at the real plant to verify model prediction

- The case study plant typically adopts a fixed dolomite feed rate equal to **80 kg/h**
- The model recommends to use a lower feed rate to minimise costs (e.g. **40 kg/h** for a typical inlet HCl conc. of 1000 mg/Nm³)

An experimental campaign was set up to verify the advantage of the lower feed rate suggested by the model

12 days of tests in both the waste incineration lines (A and B) of the case study plant

- varying the imposed feed rate of dolomite in furnace sorbent injection, by **alternating** 2 days at 40 kg/h with 2 days at 80 kg/h
- the HCI emission setpoint at stack was always kept at 2 mg/Nm³

Test at the real plant to verify model prediction

- The case study plant typically adopts a fixed dolomite feed rate equal to 80 kg/h
- The model recommends to use a lower feed rate to minimise costs (e.g. **40 kg/h** for a typical inlet HCl conc. of 1000 mg/Nm³)

An experimental campaign was set up to verify the advantage of the lower feed rate suggested by the model

Test at the real plant to verify model prediction

- The case study plant typically adopts a fixed dolomite feed rate equal to 80 kg/h
- The model recommends to use a lower feed rate to minimise costs (e.g. **40 kg/h** for a typical inlet HCl conc. of 1000 mg/Nm³)
- An experimental campaign was set up to verify the advantage of the lower feed rate suggested by the model

Conclusions

- the present study proposed a simple methodology for the optimization of dolomite-based furnace sorbent injection, which is an interesting technique for the retrofitting of waste-toenergy plants
- the methodology, based on the calibration of an operational model with test runs, pinpointed the importance of identifying the optimal operating point for the reduction of acid gas treatment cost
- the validation of the methodology in a real plant demonstrated that a properly optimized dolomite-based furnace sorbent injection can achieve significant cost savings (higher than 10%) compared to a non-optimized system or a single-stage bicarbonate system

THANKS FOR YOUR ATTENTION

Alessandro DAL POZZO <u>a.dalpozzo@unibo.it</u>

MAIN PAPERS ON ACID GAS REMOVAL

	I
	I
	I
	J

Dal Pozzo, Muratori, Antonioni, Cozzani, Economic and environmental benefits by improved process control strategies in HCl removal from waste-to-energy flue gas, *Waste Management* **2021**, 125, 303–315.

Dal Pozzo, Lazazzara, Antonioni, Cozzani, Techno-economic performance of HCl and SO2 removal in waste-to-energy plants by furnace direct sorbent injection, *Journal of Hazardous Materials* **2020**, 394, 122518.

Dal Pozzo, Moricone, Tugnoli, Cozzani, Experimental Investigation of the Reactivity of Sodium Bicarbonate toward Hydrogen Chloride and Sulfur Dioxide at Low Temperatures, *Industrial and Engineering Chemistry Research* **2019**, 58, 6316-6324.

Dal Pozzo, Guglielmi, Antonioni, Tugnoli, Environmental and economic performance assessment of alternative acid gas removal technologies for waste-to-energy plants, *Sustainable Production and Consumption* **2018**, 16, 202-215.

Dal Pozzo, Moricone, Antonioni, Tugnoli, Cozzani, Hydrogen Chloride Removal from Flue Gas by Low-Temperature Reaction with Calcium Hydroxide, *Energy & Fuels* **2018**, 32, 747-756.

Dal Pozzo, Armutlulu, Rekthina, Muller, Cozzani, CO₂ Uptake Potential of Ca-Based Air Pollution Control Residues over Repeated Carbonation-Calcination Cycles, *Energy & Fuels* **2018**, 32, 5386– 5395.

Dal Pozzo, Guglielmi, Antonioni, Tugnoli, Sustainability analysis of dry treatment technologies for acid gas removal in waste-to-energy plants, *Journal of Cleaner Production* **2017**, 162, 1061-1074.

Antonioni, Dal Pozzo, Guglielmi, Tugnoli, Cozzani, Enhanced modelling of heterogeneous gas-solid reactions in acid gas removal dry processes, *Chemical Engineering Science* **2016**, 148, 140-154

Dal Pozzo, Antonioni, Guglielmi, Stramigioli, Cozzani, Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes, *Waste Management* **2016**, 51, 81-90.

