

8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT 23 - 26 JUNE 2021, THESSALONIKI, GREECE

Evaluation of the polymeric membranes' performance in terms of laboratory-scale CO₂ removal/separation from biogas

Chrysovalantou Koutsiantzi^{1,*}, Eustathios Kikkinides¹, Manassis Mitrakas¹, Anastasios Zouboulis², Ioannis Kellartzis¹, George Stavropoulos¹

¹ Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

² Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

* Corresponding e-mail: vkoutsiantzi@gmail.com

Introduction (1/3)

- Increasing organic waste disposal → emergent need for their use, aiming to energy recovery and nutrients' recycling
- Anaerobic Digestion (AD) → Crude biogas production, consisting of:
 - Methane (50-75%), Carbon Dioxide (50-25%)
 - Minor impurities (Hydrogen Sulfide H₂S, NH₃, Moisture, Siloxanes)
- Necessity of pre-treatment for the elimination of minor impurities
- Biogas Upgrade using polymeric membranes
- Purpose: 95% CH₄ Purity

Introduction (2/3)

Asymmetric Hollow fiber (HF) membranes

- Hollow fibers: bundled in compact volume
- Shell: hollow fibers' housing
- Separation principle:
 - Permeability difference of gases
 - Pressure difference between shell and fibers
- Retentate Stream: Product gas, rich in Methane
- Permeate Stream: Recycling stream, rich in Carbon Dioxide

Introduction (3/3)

Polysulfone HF 2-stage membrane

Polymeric membranes' main benefits when applied for biogas upgrade

- (+) Wide commercial use
- (+) High Perm-selectivity
- (+) Low production cost
- (+) Easy to scale up
- (-) Plasticization, physical aging problems

- Investigation of a biogas upgrade system using polymeric membranes
- Evaluation of various polymeric membranes
- Design of a membrane setup for the upgrade of biogas on a laboratory scale
- Simultaneous recycling of captured CO₂

Experimental Setup (1/4)

• Flowchart of the experimental set-up

PI: Pressure Indicator

PC: Pressure Controller

MFC: Mass Flow Controller

F: Flowmeter

BPR: Back Pressure Regulator

Experimental Setup (2/4)

Experimental conditions for gas separation tests.

Experimental condition	Mixed gas separation (CH ₄ /CO ₂)
Feed gas composition, (%vol)	55/45, 60/40, 65/45, 70/30
Feed pressure, (bar)	0.7 - 1.5
Permeate pressure, (bar)	0
Feed temperature, (°C)	20

Experimental Part (3/4)

• Countercurrent flow

Experimental Part (4/4)

Gas separation experiments

▶ Binary gas mixture of CH₄ and CO₂

- 2-stage membrane module
- Back Pressure Regulator
- Mass flow controllers/Flow meters for each stream
- Gas Analyzer (Rapidox 3100EAM)

Results (1/8)

Figure 1: Gas separation performance for various feed pressure values (0.7 – 1.5 bar) (gas composition: 55% CH₄/45% CO₂)

Increase of CH_4 purity when CH_4 recovery diminishes. Purity > 95% around 40% recovery.

10/20

Results (2/8)

Figure 2: Gas separation performance for various back pressure values (0.7 – 1.5 bar) (gas composition: 60% CH₄/40% CO₂)

Increase of CH_4 purity when CH_4 recovery reduces. Purity > 95% around 40% recovery.

Results (3/8)

Figure 3: Gas separation performance for various back pressure values (0.7 – 1.5 bar) (gas composition: 65% CH₄/35% CO₂)

Increase of CH_4 purity when CH_4 recovery reduces. Purity > 95% around 40% recovery.

Results (4/8)

Figure 4: Gas separation for various back pressure values (0.7 – 1.5 bar) (gas composition: 70% $CH_4/30\%$ CO_2)

Increase of CH_4 purity when CH_4 recovery reduces. Purity > 95% around 40% recovery.

13/20

Results (5/8)

Figure 5: Effect of stage cut on CH_4 purity for various feed pressure values (0.7 - 1.5 bar) (gas composition: 55% $CH_4/45\%$ CO_2)

Increase of stage cut values leads to higher CH_4 purity. Purity > 95% when stage cut > 0.74 for feed pressure = 1.1 bar

14/20

Results (6/8)

Figure 6: Effect of stage cut on CH_4 purity for various feed pressure values (0.7 – 1.5 bar) (gas composition: 60% $CH_4/40\%$ CO_2)

Increase of stage cut values leads to higher CH_4 purity. Purity > 95% when stage cut > 0.75 for feed pressure = 1 bar

15/20

Results (7/8)

Figure 7: Effect of stage cut on CH_4 purity for various feed pressure values (0.7 – 1.5 bar) (gas composition: 65% $CH_4/35\%$ CO_2)

Increase of stage cut values leads to higher CH_4 purity. Purity > 95% when stage cut > 0.7 for feed pressure = 0.9 bar

16/20

Results (8/8)

Figure 8: Effect of stage cut on CH_4 purity for various feed pressure values (0.7 - 1.5 bar) (gas composition: 70% $CH_4/30\%$ CO_2)

Increase of stage cut values leads to higher CH_4 purity. Purity > 95% when stage cut > 0.7 for feed pressure = 0.9 bar

17/20

Conclusions (1/2)

▶ High purity biomethane separation is achieved (>95% CH_4) for feed pressures higher than 1 bar

CH₄ recovery: decreases with increasing stage cut, while CH₄ purity increases

Optimum conditions :

40% CH_4 recovery \rightarrow > 95% CH_4 purity

..recovery ratio can be improved with the add of extra modules or recycle streams

Conclusions (2/2)

Stage cut: higher stage cut values \rightarrow higher CH₄ purities

Optimum conditions

Stage cut between 0.7-0.9 \rightarrow >95% CH₄ purity

(-) Lower stage cut leads in low CH₄ purity or limited biogas capture.

8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE SOLID WASTE MANAGEMENT 23 – 26 JUNE 2021, THESSALONIKI, GREECE

Thank you for your attention

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T2EDK-01293).