Anaer dic co-digestion of divecil pomaceas astrategyfor bioenergyproduction intheMeDregion

THESE LONK 2021 Conference

TABLEOF CONTENTS

01 Chine oil Dreed of

Oiveoil Production

in numbers

02

Problem

environmental pressures

03

Economic cont ext

circular bioeconomy

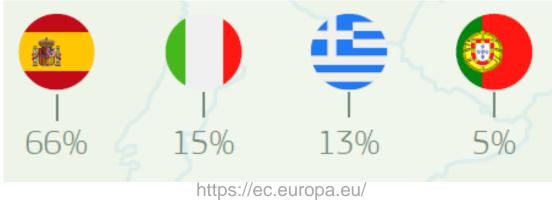
04

Solution

one possible strategy

01 Oiveal production

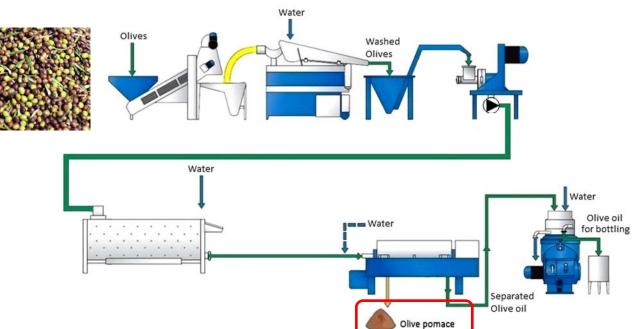
in numbers


About 3 million tonnes of olive oil produced yearly

Of which c.a 2 million tonnes in the $E\,U$

The main Member States involved are in the MED

region:

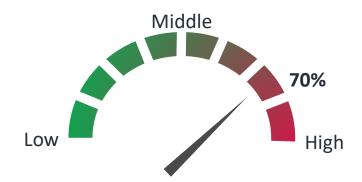


02 Problem

environmental pressure

Oiveal extraction

two-phase process



REEM

The production of 1 tonne of olive oil leads to 4 tonne of olive pomace (OP)

e.g. around 5 000 000 tonnes produced annually in Spain

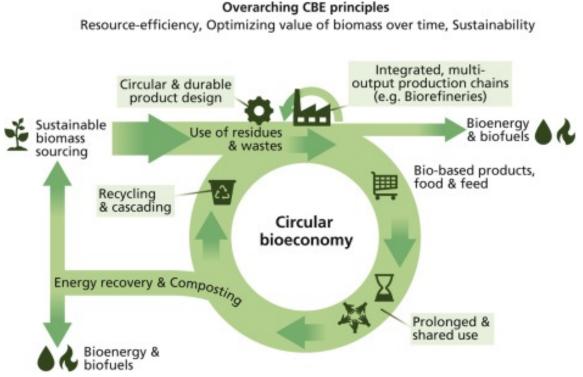
OP high organic matter content, including phenolic compounds that are recalcitrant and **inhibitory/phytotoxic**

OP from two-phase system has high water content

(vs 30-45% for three-phase OP)

As OP from two-phase system needs to be dried before recovering the residual oil this valorisation has become less attractive Need to exploit alternative valorisation routes

- recovery of phenolic compounds
- composting
- anaerobic digestion


. . .

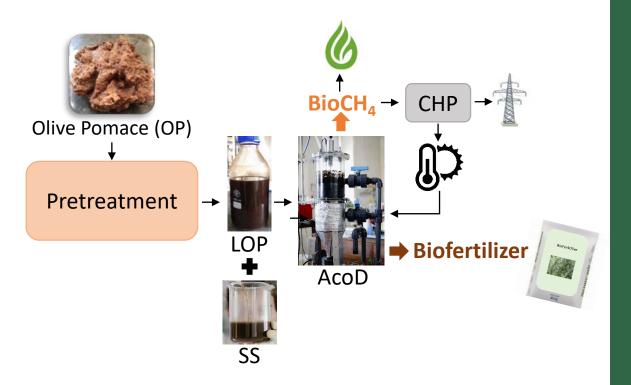
03 Economic context

Circular bioeconomy

Stegmann et al.(2020) The circular bioeconomy: Its elements and role in European bioeconomy clusters doi.org/10.1016/j.rcrx.2019.100029

New economic paradigm pushing the pursuit for sustainable biowaste valorization routes

Cascading


Biorefineries

Bioenergy

04 solution

one possible strategy

One solution

MATERALANDMETHODS

Samples sour ceand pret reatments

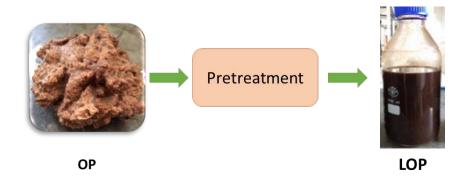
Oiveal mil pomace(OP)

Collected from a two-phase mill in Ribatejo (Portugal).

TS 58.95 ± 0.07% VS 48.30 ± 0.43% (dm) pH 4.37 ± 0.42

Sewages ludge (SS)

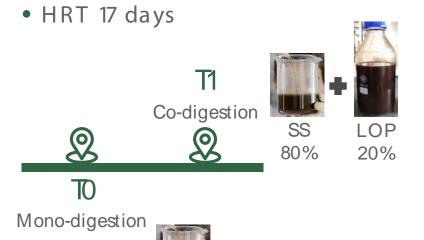
Collected from a WWTP with an average flow of 53,000 m³/day (211,000 inhabitant's equivalent), located in Lisbon, Portugal.

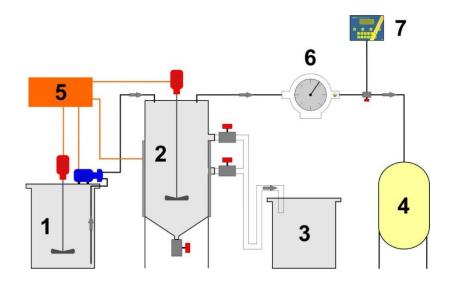

SS is a mixture of primary sludge and waste activated sludge (40:60, v:v).

MATERALANDMETHODS

Samples sour ceand pret reatments

OP was pretreated by hydrolysis under alkaline conditions


- 0.4% sodium hydroxide solution
- dried solid to liquid ratio of 1/10
- 24h contact time at room temperature


Liquid extract (LOP) obtained by filtration under vacuum was characterized and used for the AD

Anaerobic digestion trial s

- CSTR working volume: 11,3 L
- Mesophilic conditions $(36 \pm 1^{\circ}C)$

SS

Lab-scale AcoD unit: 1- Substrate mixture tank; 2- CSTR; 3- Digestate collection tank; 4 - Gas holder; 5 - Control System; 6 - Gas meter; 7 - Gas analyser

Results and discussion

Physico-chemical characterization of the feed during T0 and T1

	ТО	T1	_
TS (gL⁻¹)	18.46 ± 2.04	19.2 ± 1.8	
VS (gL⁻¹)	13.51 ± 1.52	16.03 ± 1.11	
VS/TS (%)	73	83	
рН	6.70 ± 0.4	7.3 ± 0.37	
EC (mS.cm ⁻¹)	1.51 ± 0.35	2.01±0.61	
TCOD (g O_2L^{-1})	23.23 ± 3.144	29.16 ± 1.35	
SCOD (g O_2L^{-1})	1.18 ± 2.13	3.06 ± 0.11	
SCOD/COD (%)	5	11	
TKN (gL ⁻¹)	1.28 ± 0.21	1.02 ± 0.18	
C/N	6	9	_

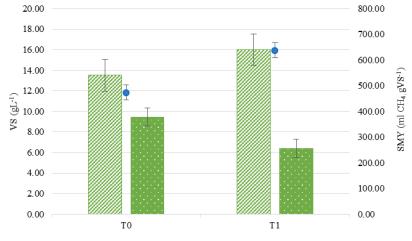
How LOP improved feed characteristics

Results and discussion

ADprocess performance

· COO/

• BPR increased 38%
• SMY increased 35%, despite
the 18% increase in OLR


• **TA** showed a **slight decrease** indicating that VFA may be accumulating (but digestate pH was 7.16 ± 0.07)

	TO	T1
OLR (g _{VS} L ⁻¹ d ⁻¹)	0.80 ± 0.23	0.94 ± 0.12
BPR (mL $L^{-1}d^{-1}$)	596 ± 42	941±77
Methane content (% CH_4)	63.5 ± 0.1	64.0 ± 0.2
SMY (mL _{CH4} g _{VS} -1)	474 ± 29	638 ± 31
SELR (d ⁻¹)	0.14	0.19
TA (mg _{CaCO3} L ⁻¹)	3200 ± 95	2762 ± 133

BPR-biogas production rate; OLR-Organic loading rate; SMY-Specific methane yield; SELR - specific energy loading rate

Results and discussion

ADprocess performance

☑ Feed ■ Digestate ● SMY

Along with the 35% increase in SMY...

Average of 60% VS removal in T1 VS 30% VS removal in T0

Improved bioconversion

React or stability

Specific Energy Loading Rate (SELR) values were kept
< 0.4 d⁻¹ indicating reactor stability

• SELR values (0.14; 0.19) suggest that LOP % can be increased without compromising reactor stability (but careful monitoring should be done)

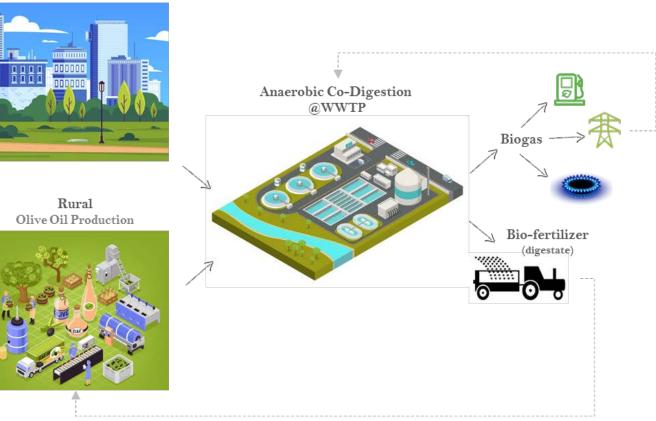
$SELR = Q \times [TCOD] / [VSS] \times V$

Q - inlet flow rate (L d⁻¹) [TCOD] - feed's total COD concentration (g L⁻¹) [VSS] - digestate's volatile suspended solids concentration (g L⁻¹) V - reactor's working volume (L)

Cond usions

AcoD of SS and LOP can be a strategy for bioenergy recovery from biowaste

Enhanced process, overcoming SS low biodegradability, a bottleneck for its AD

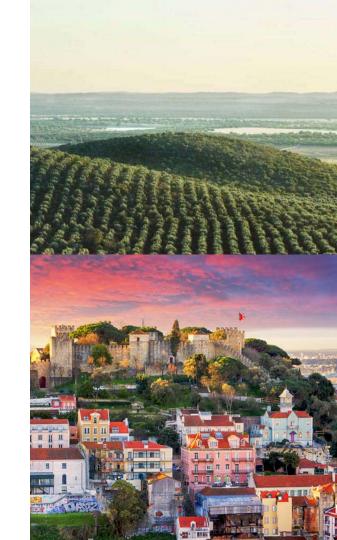

Process stability was not compromised by LOP phenolics but careful monitoring should be done

Energy balance and process economics should be addressed

Cond usions

Promoting Rural-Urban Symbiosis

City



THANS

Do you have any questions? ritafragoso@isa.ulisboa.pt

This work was supported by national funds through FCT –Fundação para a Ciência e Tecnologia, I.P., in the scope of the project Linking Landscape, Environment, Agriculture And Food Research Centre Ref. UIDB/04129/2020

