

BIOCHEMICAL METHANE POTENTIAL OF VARIOUS PROMISING AGRICULTURAL RESIDUES IN SOUTHERN AND NORTHERN GREECE

Vasiliki P. Aravani¹, Konstantina Tsigkou², Michael Kornaros³, Vagelis G. Papadakis⁴

- 1 Environmental Engineer, PhD Candidate, Department of Environmental Engineering, University of Patras, Greece
- 2 Chemist, PhD in Chemical Engineering, Department of Chemical Engineering, University of Patras, Greece
- 3 Professor, Department of Chemical Engineering, University of Patras, Greece
- 4 Professor, Department of Environmental Engineering, University of Patras, Greece

INTRODUCTION

- Greece: strong agro-industrial sector
- Almost 70% of its total area is used for agricultural activities
- Main categories of generated residues

PROPOSED SUBSTRATES FOR ANAEROBIC DIGESTION

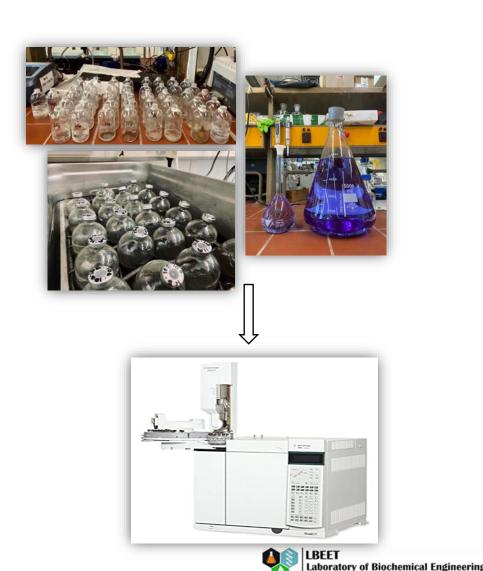
- Humidity> 50-55%
- 15<C:N<30

- Abundancy
- Ease of collection

MATERIALS AND METHODS

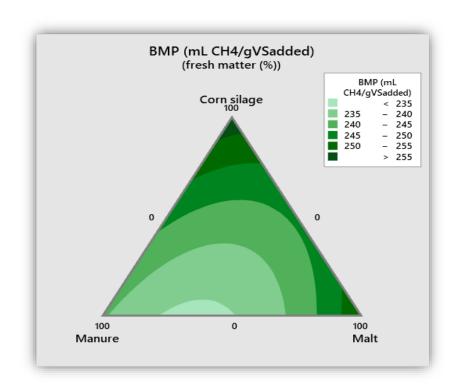
- Collection of samples from the region of Western Greece storage in the freezer at -18 °C
- Protocol for BMP measurement: "Defining the biomethane potential (BMP) of solid organic wastes and energy crops"
- BMP assays for Northern & Southern Greece (Summer and/or Winter)
- Tested Substrates:

Northern Greece: summer & winter



Southern Greece: summer

BIOCHEMICAL METHANE POTENTIAL ASSAYS

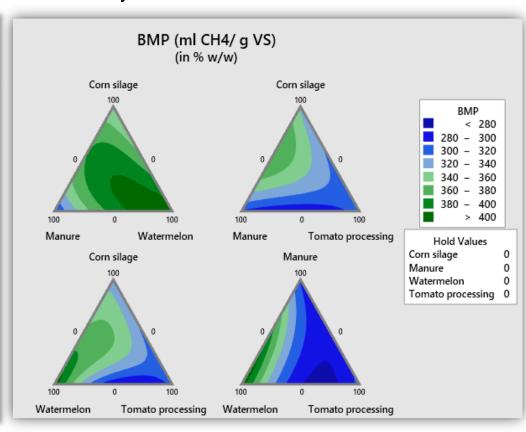

- BMP: experimental procedure developed to determine the maximum methane potential of a given organic substrate during its anaerobic decomposition
- Experimental BMP design: use of DOE mixture (Design of Experiments), Minitab 19
- For mixtures, the proportions of the ingredients are variable (0-100% v/v), while their total quantity remains unchanged (2 g VS L⁻¹)

BMP RESULTS NORTHERN GREECE (SUMMER AND WINTER)

Corn silage	Cattle manure	Malt	Corn silage	Cattle manure	Malt	Measured BMP	Expected BMP
(%w/w fresh matter)				(%VS)		(ml CH ₄ g VS_{added}^{-1} ± SD)	(ml CH_4 g VS_{added}^{-1})
0	0	100	0	0	100	255.23 ± 16.40	-
100	0	0	100	0	0	262.40 ± 34.37	-
0	100	0	0	100	0	236.08 ± 3.36	-
0	50	50	0	12.14	87.86	239.35 ± 11.17	252.90
50	0	50	62.14	0	37.86	259.25 ± 10.04	259.68
50	50	0	92.23	7.77	0	254.60 ± 7.28	260.36
33.33	33.33	33.33	59.05	4.97	35.98	238.60 ± 5.87	258.51
16.67	16.67	66.67	28.40	2.39	69.21	232.65 ± 10.96	256.81
66.67	16.67	16.67	85.22	1.79	12.98	226.70 ± 32.53	260.99
16.67	66.67	16.67	51.39	17.31	31.31	243.03 ± 8.94	255.60

$$Expected \ BMP \ (ml \ CH_4 \ g \ VS_{\rm added}^{-1}) = \\ \frac{(V_{S1} * VS_{S1} * BMP_{S1}) + (V_{S2} * VS_{S2} * BMP_{S2}) + (V_{S3} * VS_{S3} * BMP_{S3})}{V_{S1} * VS_{S1} + V_{S2} * VS_{S2} + V_{S3} * VS_{S3}}$$

$$Y (ml CH_4/g VS_{added})$$


- $= 2.58Corn \ silage + 2.41Manure + 2.55Malt 0.001Corn \ silage * Manure$
- $-0.004Corn\ silage*Malt-0.005Manure*Malt$

BMP RESULTS SOUTHERN GREECE (SUMMER)

Corn silage	Cattle manure	Watermelon	Tomato processing residues	BMP (mL CH ₄ /g VS ± SD)	Expected BMP (mL CH ₄ /g VS)
	(%w/w f	fresh matter)	2 5 D)		
0	0	0	100	305.53 ± 27.82	-
100	0	0	0	329.20 ± 27.65	-
0	100	0	0	294.10 ± 49.14	-
0	0	100	0	420.98 ± 3.43	-
0	0	50	50	284.18 ± 41.40	319.94
0	50	0	50	281.05 ± 11.60	304.42
0	50	50	0	390.58 ± 8.38	366.53
50	0	0	50	311.55 ± 8.91	318.79
50	0	50	0	365.85 ± 3.96	338.45
50	50	0	0	374.50 ± 12.94	326.47
0	33.33	33.33	33.33	294.40 ± 13.36	317.72
33.33	0	33.33	33.33	346.53 ± 44.58	324.82
33.33	33.33	0	33.33	326.60 ± 33.94	317.67
33.33	33.33	33.33	0	389.83 ± 24.57	335.32
25	25	25	25	360.13 ± 2.86	323.51
12.5	12.5	12.5	62.5	328.88 ± 7.67	312.48
62.5	12.5	12.5	12.5	397.53 ± 31.29	327.32
12.5	62.5	12.5	12.5	358.15 ± 2.69	319.24
12.5	12.5	62.5	12.5	367.45 ± 13.36	341.49

 $Y(ml CH_4/g VS_{added})$

 $[*]Watermelon + 0.00038*Corn\,silage*Manure*Tomato\,processing + 0.0013*Corn\,silage*Watermelon*Tomato\,processing - 0.00019*Manure*Watermelon*Tomato\,processing + 0.0013*Corn\,silage*Watermelon*Tomato\,processing + 0.00019*Manure*Watermelon*Tomato\,processing + 0.00019*Manure*Watermelon*Tomato*Manure*Watermelon*Tomato*Manure*Watermelon*Watermelon*To$

 $^{= 3.36016*}Corn\,silage + 2.96731*Manure + 4.1688*Watermelon + 3.08904*Tomato\,Processing + 0.02449*Corn\,silage*Manure - 0.00454*Corn\,silage*Watermelon - 0.00295$

 $^{* \}textit{Corn silage} * \textit{Tomato processing} + 0.01226 * \textit{Manure} * \textit{Watermelon} - 0.00825 * \textit{Manure} * \textit{Tomato processing} - 0.03257 * \textit{Watermelon} * \textit{Tomato processing} + 0.00039 * \textit{Corn silage} * \textit{Manure} * \textit{Manur$

CONCLUSIONS OF BMP ASSAYS NORTHERN GREECE (SUMMER AND WINTER)

- The BMP results of the mono-substrates are in agreement with the existing literature
- There were no statistically significant differences or synergies between the substrates
- Higher BMP values: close to 100% malt or corn silage
- Parameters such as availability, reactor's characteristics and type of anaerobic digestion could determine the proportion of substrates

CONCLUSIONS OF BMP ASSAYS SOUTHERN GREECE (SUMMER)

- The values of the mono-substrates are in agreement with the existing literature
- Most promising mixture: 12.5% corn silage-12.5% cattle manure-62.5% watermelon-12.5% tomato processing residues
- Higher BMP values: close to 100% watermelon
- Synergistic and antagonistic phenomena were also exhibited, depending on the mixture composition and the physicochemical characteristics of the substrates

FUTURE WORK

- BMP assays completion for the determination of the optimum substrates' ratios for maximum methane production (scenarios of Summer and Winter, Southern Greece)
- Continuous stirred tank reactors operation Organic loading rate tests

THANK YOU FOR YOUR ATTENTION

This work has derived and financed from project SYNAGRON, a joint RT&D project under **Greece – China Call for Proposals** launched under the auspices of the **Ministry of Science and Technology (MOST)** of the People's Republic of China and the Ministry of Development & Investments / **General Secretariat of Research and Technology (GSRT)** of the Hellenic Republic.

