

A techno-economic comparison between technologies for biomass fractionation including liquor re-use

Priscilla Vergara, Franco Mangone, João P. Del Pintor, Miguel Ladero, Juan.C. Villar, Félix. García-Ochoa, Soledad Gutiérrez

Sustainable production of bio-based fuels and chemicals

- Agricultural residues are low cost and abundant
- Lignocellulosic Biomass (LCB) as a source of carbohydrate platform chemicals
- Economy of this process is still challenging

LCB to sugars

♦ Our focus is to valorize all streams not only glucose solution

Pre- treatment alternatives for LCB

- **♦ Diluted mineral acids** (0.5-4%), T: 120-200 °C
- ♦ **Steam explosion**, saturated steam at 160-250°C. Rapid decompression after few minutes
- ◆ Ethanol/Water (EW) extraction Solvent-Water mixtures. Acid catalysts improve hemicelluloses hydrolysis.
- ♦ Alkalyne pulping Sodium/potassium hydroxides, T < 120ºC</p>

Pre-treatment economy

- ♦ The main drawback of pre-treatments is the associated costs of energy and product concentration stages
- This issue is a bottleneck for the development of a cost effective bioprocess which results in increased downstream processing cost, when compared with crude oil alternative
- In the case of the water-solvent fractionation they increase with the additional energy involved in the solvent recovery
- ♦ Raw material is cheap, eventually a residue
- ♦ Herbaceous vs. Wood: L/S ratio

EW Pre-treatment economy

- ♦ EW pre-treatment is, apparently, the less favourable pre-treatment in terms of energy consumption (Kautto et al., 2014; Rodrigues Gurgel et al2018)
- ♦ It is more efficient in the delignification than diluted acid pre-treatments. Moreover, EW pulps exhibit less inhibition problems in the further saccharification and fermentation stages (Palmqvist and Hahn-Hägerdal, 2000).

Aim of the study

- ♦ To set up EW and DSA fractionation process simulations for wheat straw
- ♦ To evaluate how a liquor re-use a strategy (EWR) affects the economy of EW process
- ♦ To conduct an economic comparison of the EW EWR, and DSA traditional method as a reference

C5/C6

- ♦ Aspen Plus V9
- ♦ Feed rate 100 ton WS/day
- ♦ Pretreatment
 - **♦L/S ratio: 10/20/30 L.kg**⁻¹
 - ♦160 °C /10 bar/1 hour
- ♦ Solid separation thickened until 40% w/w

- ♦ Feed rate 100 ton WS/day
- ♦ Pretreatment
 - ♦ L/S ratio: 10/20/30 L.kg⁻¹
 - ♦ 160 °C /10 bar/1 hour
 - ♦ Solid separation thickened until 40% w/w
- ♦ Washing 2 steps, L/S 4:1

- ♦ Feed rate 100 ton WS/day
- ♦ Pretreatment
 - ♦ L/S ratio: 10/20/30 L.kg⁻¹
 - ♦ 160 °C /10 bar/1 hour
 - ♦ Solid separation thickened until 40% w/w
- ♦ Washing 2 steps, L/S 4:1
- ♦ <u>Liquor concentration</u> 2-step evaporators, final concentration 40% w/wXylose + Glucose

- ♦ Aspen Plus V9
- ♦ Feed rate 100 ton WS/day
- ♦ Pretreatment
 - ♦ L/S ratio: 10/20/30 L.kg⁻¹
 - ♦ 160 °C /10 bar/1 hour
 - ♦ Solid separation thickened until 40% w/w
- ♦ Washing 2 steps, L/S 4:1
- ♦ <u>Liquor concentration</u> 2-step evaporators, final concentration 40% w/w
 Xylose + Glucose
- ♦ Enzymatic hydrolysis 48 h, Consistency10%

- ❖ DSA: 1% (w/w) H2SO4 based on WS weight in water
- **♦ EW**:
 - ♦ 1% (w/w) H2SO4 based on WS weight in EW mixture with 25% v/v (28.8% w/w) of ethanol
 - ♦ Distillation column:
 - Fed with 1st. washing liquid stream
 - Eficiency in Ethanol 98%

Chemical reactions

♦ Pretreatment

- CELLULOSE (s) + H2O (I) → GLUCOSE (aq)
- LIGNIN (s) → LIGNIN (aq)
- \circ XYLAN (s) \rightarrow FURFURAL (aq) + 2 H2O(l)
- \circ CELULOSE (s) → HMF (aq) + 2 H2O(I)
- ARABINAN (s) + H2O (l) → ARABINOSE (aq)
- ASHES (s) → ASHES (ac)

Conversion fraction					
DSA	EW				
0,1476	0,1438				
0,8256	0,8259				
0,2882	0,5731				
0,018	0				
0,0024	0				
0,9752	0,8414				
0,8209	0,7656				
0,8	0,8				

�	Enzymatic	hydro	lysis
----------	-----------	-------	-------

♦ CELULOSE (s) + H2O (l) → GLUCOSE (ac)

0,752 0,767

Re-use strategy in batch operation

Re-use strategy in batch operation

- Energy, water, and solvent savings
- Consecutive cycles will have different initial conditions

Liquor re-use drawbacks

Liquor will spend more and more time in the batch reactor. Undesirable reactions like sugar degradation will occur to a greather degree

Liquor will concentate in sugars but also in inhibitor compounds, so they could cause enzymatic inhibition

The dynamic nature of this process make the re-use difficult to model and include in a simulation for mass integration.

Re- use experimental data_previous work

Vergara et al (2018) Biores.Technol. 256, 178-186

The recovery of solids (SR) decreases as the number or cycles increases (higher glucan solubilization)

Enzymatic Hydrolysis (EH) occurs faster and in a greather extent.

These two opposing effects compensates and the glucose after enzymatic hydrolisis has similar concentration among re-uses

Chemical reactions_EWR conversion factors

♦ Pretreatment

- CELLULOSE (s) + H2O (I) → GLUCOSE (aq)
- LIGNIN (s) → LIGNIN (aq)
- \circ XILAN (s) → FURFURAL (aq) + 2 H2O(l)
- \circ CELULOSE (s) \rightarrow HMF (aq) + 2 H2O(l)
- ARABINAN (s) + H2O (l) → ARABINOSE (aq)
- ASHES (s) → ASHES (ac)

Conversion fraction- RE-USE								
#1	#2	#3	#4					
0,1432	0,1997	0,2043	0,2306					
0,8335	0,8443	0,8513	0,8650					
0,5515	0,5742	0,5673	0,5569					
0,028	0,0457	0,0643	0,0767					
0	0,0076	0,0048	0,0058					
0,8435	0,8575	0,8703	0,8798					
0,795	0,8731	0,9086	0,9037					
0,8	0,8	0,8	0,8					

♦ Enzymatic hydrolysis

♦ CELULOSE (s) + H2O (I) → GLUCOSE (ac)

0,823	0,832	0,907	0,938
-------	-------	-------	-------

Re-use set up

Process costs

- Only capital and operating costs (utilities, water and etanol) have been considered. Other costs were considered similar for all alternatives
- Costs are not included upstream (stocking and handling of raw materials), nor downstream (use of the sugars obtained)
- ♦ Equipment cost has been annualized considering 10 years life Project

Results_ annualized investment costs L/S 20:1

Results_ operating costs

Results_ total costs

Results_ L/S ratio

		Facilities, Equipment		Operating Costs (\$/yr)			Total Operating cost	
		(\$/yr)	Ratio	Utilities	Water	Ethanol	(\$/yr)	Ratio
	1:10	1.005.510	1	1.304.028	945.212	0	2.249.240	1
DSA	1:20	1.078.280	1,07	2.552.854	1.089.792	0	3.642.646	1,62
	1:30	1.138.770	1,13	3.803.263	1.234.768	0	5.038.031	2,24

		Facilities, Equipment		Operating Costs (\$/yr)			Total Operating cost	
		(\$/yr)	Ratio	Utilities	Water	Ethanol	(\$/yr)	Ratio
	1:10	1.003.030	1,00	1.910.858	846.668	200.276	2.957.802	1,00
EW	1:20	1.083.600	1,08	3.749.249	951.548	296.772	4.997.570	1,69
	1:30	1.140.800	1,14	5.636.585	969.764	327.724	6.934.073	2,34

		Facilities, Equipm	nent	Oper	rating Costs (\$/yr)	Total Oper	ating cost
		(\$/yr)	Ratio	Utilities	Water	Ethanol	(\$/yr)	Ratio
	1:10	942.350	1,00	1.166.220	899.455	63.906	2.129.581	1,00
EWR	1:20	967.470	1,03	2.360.794	1.012.354	106.783	3.479.931	1,63
	1:30	997.470	1,06	3.562.812	1.123.868	141.923	4.828.603	2,27

Conclusions

- ♦ EW is around 30% more expensive than DSA treatment
- ♦ Re-use strategy compared with DSA result in 5% savings, with a better quality lignin
- ♦ Operating cost are more tan twice as high when L/S ratio increase from 1:10 to 1:30
- Total costs are dominated by operating costs (utilities)
- Investment costs are dominated by enzymatic hydrolisis process

ACKNOWLEDGEMENTS

Authors acknowledge the support of:

- ♦ The Uruguayan National Agency of Research and Innovation
- ♦ The Spanish Science and Innovation Ministry, through projects: CTQ2017-84963-C2 (R-1 and R-2) and PCI2018-093114.
- ♦ The Madrid Regional Government, through the project: RETOPROSOST P2013-MAE2907
- ♦ <u>CYTED</u> (the Ibero-American Programme on Science and Technology for Development), through the thematic network: RESALVALOR 319RT0575

Thank you!

Questions?

soledadg@fing.edu.uy

