Integrated process for PHA production from lignocellulosic waste: A new anaerobic biorefinery

Luis D. Allegue, Maria Ventura, Daniel Puyol Santos, Juan A. Melero

THESSALONIKI2021

Context

Lignocellulosic waste

The upcycling of waste biomass into high-added value products can be an attractive route for attaining the circular bio-economy as well as environmental sustainability

- 1. Most abundant natural renewable resource
- 2. Agricultural, forest, and municipal waste
- 3. Does not compete with food production

Context

Material and methods

Lab-scale proof of concept

Pruning waste

Final sector of the sector of

Severity factor: $Ro = \int_{0}^{t} exp\left(\frac{T(t) - \text{TRef}}{14.75}\right) dt$ $R_{0}: 2.1 - 3.1 - 3.9$

Specific Phototrophic Activity Test (SPA)

Standard BMP test

Conditions: 45 W m⁻² IR Light 1 g DQO L⁻¹ PPB inoculum

Thermal hydrolysis

Figure 1: FTIR spectra of the three hydrothermal pretreatments, 120(pink), 150 (black) and 180 °C (green) and initial (blue) solid phases.

Crystallinity increase(CR₁)

Figure 2: Comparison of DRX spectra of the raw waste (blue) and the hydrothermal pretreatments solid phases were 120 (pink), 150 (black) and 180 °C (green).

- Solid destruction: 13-29%
- COD solubilization: 9-24%
- DQO/N/P: 100/3/0.5

Anaerobic digestion

Figure 3: BMP results and 95% confidence regions for the first-order kinetic parameters.

Energy integration balance

Table: Energy integration balance. Results were simulated for a combined heat and power (CHP) system for electricity and thermal energy production.

Substrate	Total Energy biogas kWh t ⁻ 1	Thermal Output kWh t ⁻¹	Electrical Output kWh t ⁻¹	Thermal energy required kWh t ⁻¹	Electrical balance kWh t ⁻¹	Thermal energy balance kWh t ⁻¹	Electric output Euro t ⁻ 1
Raw	1343	739	443		428	739	64
TH-120°C	1343	739	443	154	408	585	61
TH-150°C	1398	769	461	177	426	592	64
TH-180°C	1693	931	559	210	524	721	79
					Ť	Ť	

Positive electrical and thermal balances

Photoheterotrophic process

Figure 4: Comparison of biomass growth (a) and SCOD consumption (b) in the SPA tests using the liquid fraction

Figure 5: Comparison of biomass yield (YX/S) (columns) with specific phototrophic activity (kM \times 10) (open squares) and PHA production yield (YPHA) (black circles) in SPA tests

- 37-60% COD consumption
- Nitrogen limitation
- 15-20% PHA in dry mass

Discussion

Prospects and industrial implications

- Current industrial PHA cost: ≈ 4-8 € t⁻¹
- The theoretical maximum PHA production yield reported by PPBs is 0.9 mol_{PHA}

mol_{Acetate}⁻¹ *. This is vastly higher than any aerobic processes

Conclusions

Key findings

- High temperatures in the thermal pre-treatment lead to better solubilisations, but may produce inhibitory products.
- Up to 180 LCH₄ Kg VS⁻¹ produce in BMP test after removal of liquid fraction
- An energetically sustainable process is achieved.
- Up to 20% PHA in dry mass is accumulated by PPB
- The PPB integrated biorefinery concept offers potential for the reduction of PHA production costs, inviting for future research

Thank you!

Luis.diaz.allegue@urjc.es

Luis D. Allegue, Maria Ventura, Daniel Puyol Santos, Juan A. Melero

THESSALONIKI2021

10/10