THESSALONIKI 8th International Conference, June 23-25, 2021

Feasibility evaluation of Construction and Demolition Waste recycling plants in Vietnam

Ngoc Han Hoang National Institute for Environmental Studies Japan

Background

- Increasing amount of CDW generated
- Poor CDW management: illegal dumping and associated issues
- Only about 10% of CDW is reused and recycled
- No CDW recycling plant is in operation in Hanoi, Vietnam
- No study exists on feasibility of CDW recycling industry

Survey objectives

- 1. To identify supply and demand for the CDW recycling industry in Hanoi, Vietnam
- 2. To identify costs and benefits of CDW recycling plants

Methodology

- Target products:
 - Concrete waste(CW): feed materials
 - Recycled Concrete
 Aggregates (RCA):
 output materials
- Mobile plant (on-site processing) and Stationary plant (offsite processing)

Stationary plant

Method (cont.): Supply and demand estimation

- **CW supply:** based on the weight-per-construction-area method
 - $FA_{Di} = TA_{i-1} + FA_{Ci} TA_i$

FA_D: Demolition area, FA_C: Construction area, TA: Total area

- WGR of WC: 353 kg/m² and 204 kg/m² for large and small-scaled demolition; 2.88 kg/m² and 62.8 kg/m² for construction
- RCA demand: amounts of virgin aggregates needed for road base and sub-base
 - $R = L \times W \times T \times D$

R: Potential demand, L: Length of newly constructed road, W: Average road width, T: Thickness of road base and subbase, D: Aggregate dry intensity.

Method (cont.): Cost and Benefit Analysis

	Financial eva.	Economic eva.
Financial benefits	\checkmark	\checkmark
Socio- environmental benefits		\checkmark
Capital costs	\checkmark	\checkmark
Operating costs	\checkmark	\checkmark
Тах	\checkmark	

- Financial and economic evaluation
 - Financial eva.: investors' perspectives
 - Economic eva.: society's perspectives (social CBA)
- Discounted cash flow method
- Net Present Value (NPV), Internal Rate of Return (IRR), Equivalent Annuity Cash Flow (EACF)

⁷ The higher, the better

Results: Estimated supply and demand

- The supply demand gap of waste concrete was remarkable after 2016 due to the Hanoi road expansion program.
- Estimation variations derive from differences in construction techniques, worker skills, etc.

Discounted cash flows

- **Stationary plant:** viable in both financial and economic evaluation.
- Unit cost: \$3.86/ton
- EACF_f: \$76,841, EACF_e: \$233,767
- **Mobile plant:** only feasible in society's perspective.
- Unit cost: \$6.72/ton
- EACF_f: \$-17,875, EACF_e: \$149,635

Estimated benefits

- RCA sales are the main income source.
- Transportation savings account for ~36% of mobile plant's benefits.
- When considered, positive externality values are ~8%.
- GHG reductions are 83% and 54% compared with BAU.

Estimated costs

- The mobile plant is more capital intensive than the stationary plant → used machinery
- Feed material, labor, and energy are the most significant operating cost components.

Sensitivity analysis

Stationary plant

Mobile plant

M₁, S₁: current assumptions

Conclusions

- There is a **promising** market for RCA.
- Both stationary and mobile plant are **feasible** investment options in social perspectives.
- Prices of CW and RCA are driving factors of their feasibility.
- Policy intervention to **internalize** positive externalities: carbon tax, virgin material tax, subsidy
- Quality of input materials
- Develop **standards** for recycled CDW products

Science and Technology Research Partnership for Sustainable Development Program

Ngoc Han Hoang, Tomonori Ishigaki, Rieko Kubota, Ton Kien Tong, Trung Thang Nguyen, Hoang Giang Nguyen, Masato Yamada, Ken Kawamoto

This research was supported as a project of the Japan Science and Technology Agency (JST) - Japan International Cooperation Agency (JICA) on Science and Technology Research Partnership for Sustainable Development (SATREPS) (No. JPMJSA1701).

Thank you very much!

