

From Animal Wastes Towards Green Fuels: A Sustainability Assessment

L.C. Chrysikou¹, V. Dagonikou¹, S. Bezergianni¹, A.I. Kokkalis², L.I. Doufas² ¹Chemical Process and Energy Resources Institute - CPERI

Centre for Research and Technology Hellas – CERTH

Thessaloniki, Thermi, 57001, Greece

² Green Innovative Company (GRINCO), Industrial Area of Larisa 17th km Larisa Thessaloniki Rd., 41004 Larisa

Presentation Outline

- Biofuels
- «FatFuel» Animal wastes upgrading towards high specification green fuels production
- Environmental assessment of green fuels production via animal wastes catalytic hydrotreatment (Well-to-Tank Analysis, WTT)
 - Life Cycle Assessment (LCA)
 - » Methodology
 - » Results
 - » Conclusions

- Fossil resources depletion I alternative energy resources
- Biodiesel 1st generation (Fatty Acid Methyl Esters, FAME)
 - Energy crops cultivations «Food-Versus-Fuel»
 - Residual Biomass Valorization **>** renewable transportation fuels
 - » Fuels from waste (cyclic economy): waste cooking oils, agricultural/municipal wastes
 - » Animal Wastes **C** valuable low-cost residual feedstoc

Animal Wastes Availability

Animal wastes annual quantities (tn)

Animal wastes utilization \bigcirc biodiesel production via transesterification

EU: 800 thousand tons animal fats were used as feedstock for biofuels production (2019)

FatFuel : Green Fuels Production via Animal Wastes Catalytic Hydrotreatment

t unit

Animal Wastes

Properties	Units	Green Fuel	Market Diesel EN 590	Paraffinic fuels EN 15940
Density	g/ml	0.787	0.820-0.845	0.765-0.8
Viscosity (40°C)	cSt	3.29	2-4.5	2-4.5
S	ppm	4.2	<10	<5
Oxidation stability	Н	>44	>6	>20
Cetane Index	-	79.3	>46	>70
Flash point	°C	126	>55	>55
Net heating value	MJ/kg	44.4	~43	~43
H ₂ O	wt%	0.005	<0.02	<0.02
Total Acid Number (TAN)	mg KOH/g	0	~0.5	-

* Dimitriadis, A, Chrysikou, L. Bezergianni. S. Scale up hydrotreatment of animal fats experimental data for green transportation fuels from TRL3 to TRL5 plant (in preparation)

Life Cycle Assessment (LCA)

Technique assessing environmental aspects associated with a product over its life cycle

- contribution analysis of the life cycle stages to the overall environmental load process improvements to low carbon emissions
- comparison between products for internal use

LCA & Biofuels

Environmental characterization of green fuels production via animal wastes catalytic hydrotreatment in terms of GHG emissions

LCA Framework (1/4) Methodology

- Inventory data
 - Experimental & literature data
 - Process Simulation (Aspen Plus V11)
 - GEMIS 5.0
- Impacts evaluation
 - Global Warming Potential (GWP, CO₂-eq)
- Results interpretation

LCA Framework (2/4) System boundaries

System boundaries production's process

Technical reference:

- Annual capacity hydrotreatment unit:
 - 13500 t (320 operation hours)
- Functional unit:
 - -1 m³ green fuel
- Negligible impacts:
 - animal wastes collection & transportation
 - construction, installation, decommissioning etc.

LCA Framework (3/4) Process Simulation

Flow diagram of the animal wastes catalytic hydrotreatment

- Aspen Plus model input data:
 - Flow rates calculation
 - Appropriate equipment selection
 - Stream properties determination

LCA Framework (4/4) Inventory Data

Inventory data based on Aspen simulation results

Inputs	Unit	Value
Animal Fats	m/m ³ biofuel	0.98
Energy		
Electricity	kWh/m ³ biofuel	18.7
Fuel gas	kWh/m ³ biofuel	2.96 10 ⁻⁵
H ₂	kg/m ³ biofuel	19.99
Outputs		
Biofuel	m/m ³ biofuel	0.89

Assumptions				
— Greek electricity grid				
— data quantification based on total	liquid			
product hydrotreating unit				
- hydrotreating catalysts' production	GHG			
emissions production negligible				

- Environmental assessment of animal wastes upgrading towards green fuels production
 - Well-To-Tank Analysis, WTT
 - » Global Warming Potential, GWP
 - Experimental & literature data
 - Process Simulation (Aspen Plus V11)
 - GEMIS 5.0

- GHG emissions green fuels production via catalytic hydrotreatment:
 404.64 kg CO₂-eq/m³
- H_2 consumption major source GHG emissions \Im RES H_2 integration \Im GHG emissions reduction (~200 kg CO₂-eq/m³)
- Animal wastes constitute potential biobased energy resource
- Future research studies I Green Fuels Well-to-Wheel Analysis

Hydroprocessing Group

Thank you for your attention

«Acknowledgment: This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code:T1EDK-02346)»

Dr. Loukia Chrysikou Email : loukia@certh.gr Tel: +30.2310.498374 | Fax: +30.2310.498380

