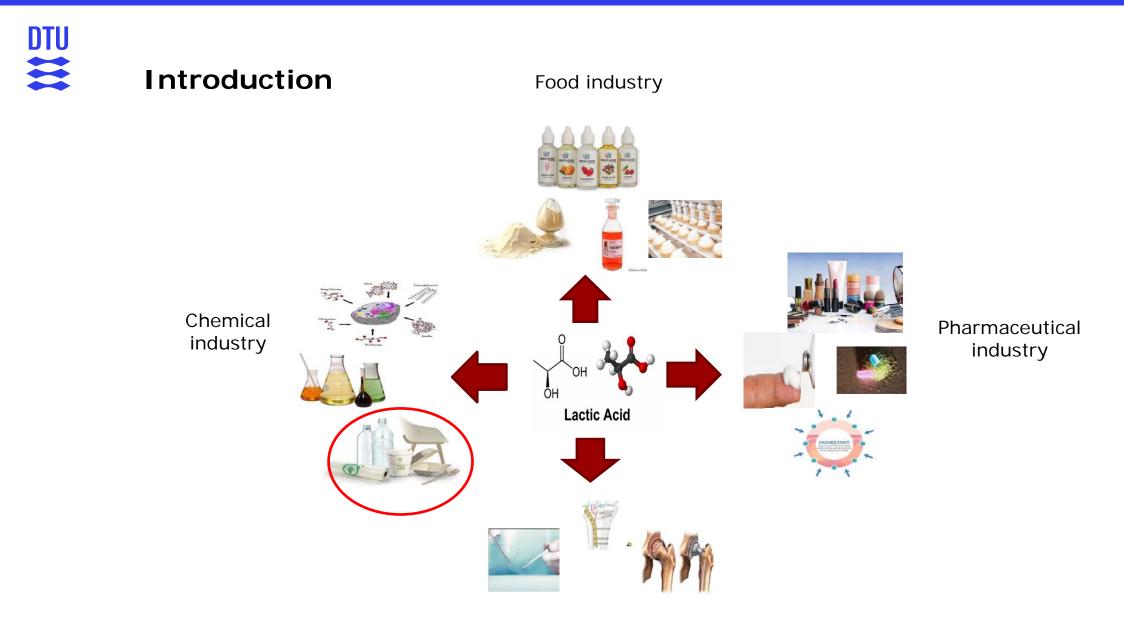
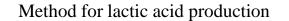


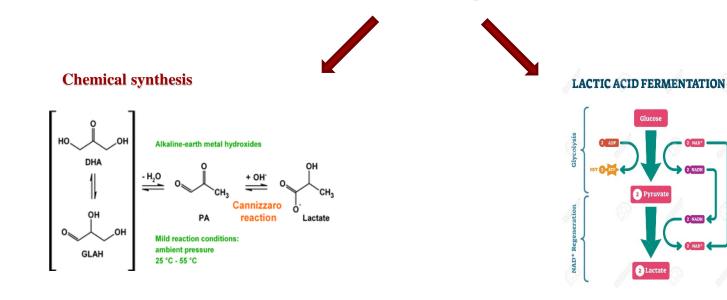
Direct production of lactic acid from source-sorted organic household waste: focusing on bio-augmentation application

Z. Zhang, P. Tsapekos, M. Alvarado-Morales, I. Angelidaki

- Introduction
- Experimental design
- * Result
- Conclusion




- Forty million tons of plastic will be accumulated per year in environment (Zhang et al. 2019)
- Plastics can be found in marine and terrestrial habitats, and even accumulated in the human body
- Plastic pollution creates a huge threat to the whole ecosystem


Bioplastic

Introduction

Advatages

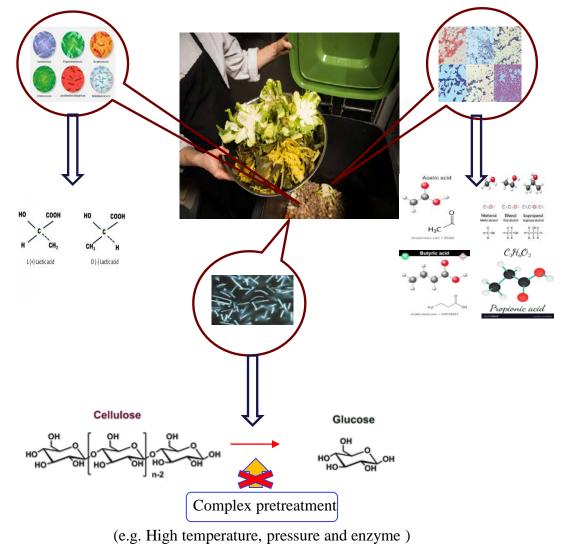
- Rapid reaction
- Disadvatges
- Mixture of L- and D- LA
 - High cost
 - Fossil fuels consumption

Advantages

٠

- Challenges:
- Accounting for above 90% ٠
- Pure optical isomer ٠
- Low energy input ٠
- Environmental concerns ٠

- High manufacturing cost
 - Locating the suitable substrate (e.g. 90 % industry LA from corn) ٠
 - High LA yield and concentration are the eternal direction ٠

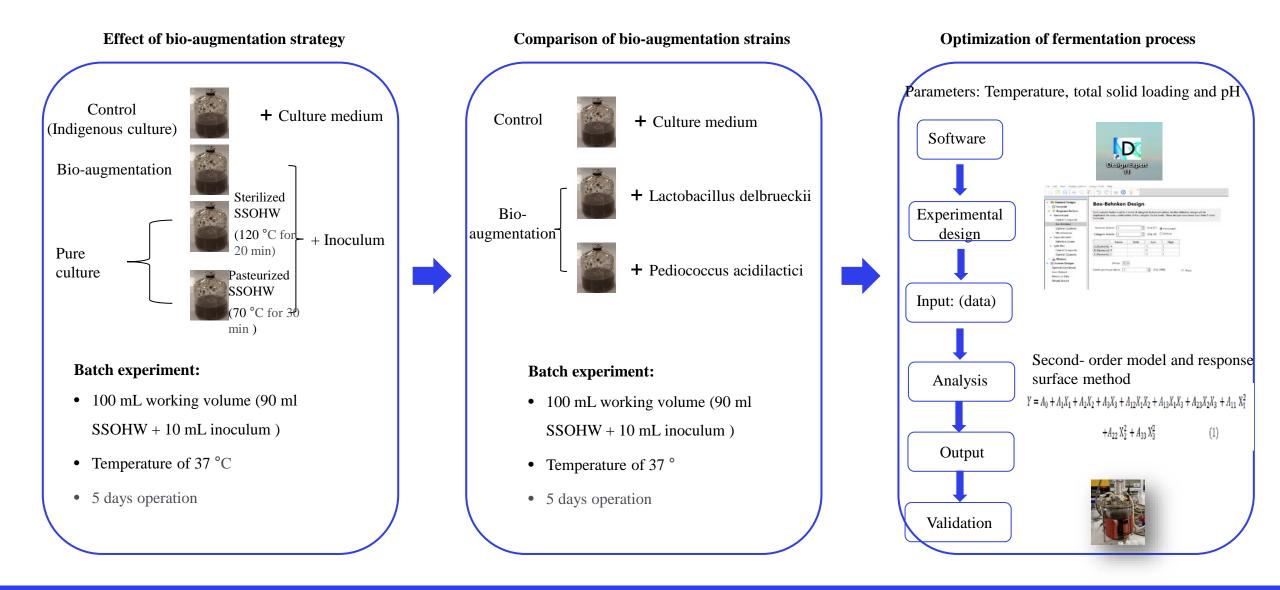


Lactic acid production from source-sorted organic household waste (SSOHW)

- The sugar content in dry SSOHW can reach 30-40 wt%
- The sugar in SSOHW is easier to degrade than other renewable substrate (e.g. lignocellulose biomass)
- The present of hydrolytic bacteria (e.g. *Firmicutes*) degrades polysaccharose to simple sugars (e.g. glucose)
- High abundant of lactic acid bacteria in indigenous bacteria (> 85 %)

Challenges

- Acidogens (e.g. acetate and ethanol producer) competing for same substrate as the LA bacteria leading to by-product formation
- Low lactic acid yield with indigenous bacteria (< 0.5 g/g-sugar) (Tang et al. 2015)



- The strategy of bio-augmentation of indigenous bacteria with pure culture is used to improve LA yield from SSOHW
- Comparing and selecting suitable pure LA bacteria for bio-augmentation
- Optimization of fermentation process to further improve the LA concentration and yield

Experimental design

Effect of bio-augmentation on lactic acid production

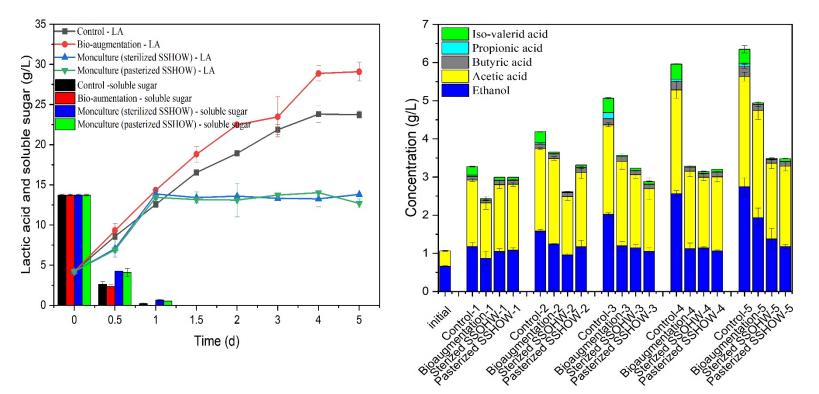


Fig. 1. Lactic acid and soluble sugar (a), and by-product concentration among monoculture culture, bioaugmentation with *P. acidilactici* and indigenous bacteria (control) fermentation.

(Soluble sugar: glucose and xylose)

- Bio-augmentation with *P. acidilactici* boosted lactic acid concentration of 109% and 22.3% compared to monoculture and indigenous culture fermentation, respectively.
- There was no significant difference between sterilized and pasteurized SSOHW
- Indigenous microorganisms played important role for decomposing complex sugars
- Bio-augmentation with *P. acidilactici* significantly decreased the by-products formation compared the indigenous culture fermentation (p < 0.05)

Effect of bio-augmentation on lactic acid production

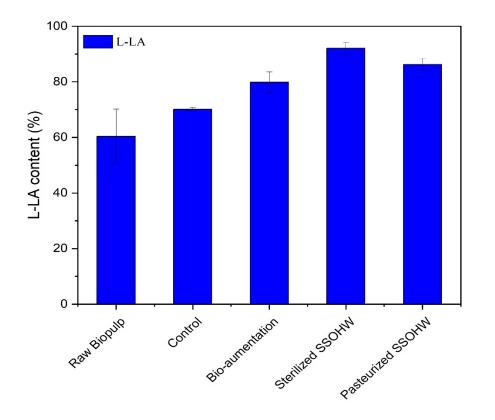


Fig. 2. The content of L-lactic acid at the end of fermentation

- The L-LA content of monoculture fermentation were 92.1% and 86.2% with sterilized and pasteurized SSHOW
- Bio-augmentation with *P. acidilactici* increased the L-LA content to 79.9% compared to indigenous culture fermentation

Comparison of different bio-augmentation strains

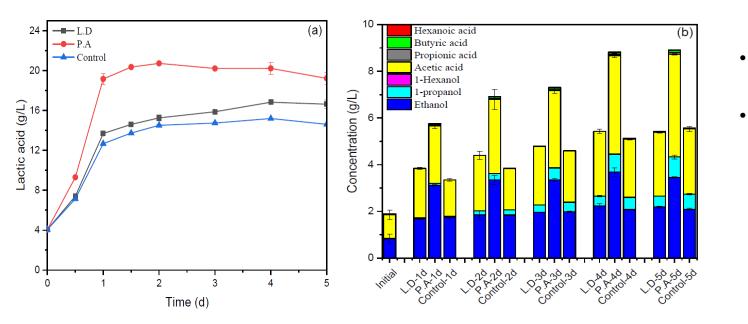


Fig. 3. Lactic acid (a) and VFAs (b) production with the addition of *Lactobacillus delbrueckii and Pediococcus acidilactici* (L.D and P.A represent *Lactobacillus delbrueckii and Pediococcus acidilactici*)

- The bio-augmentation with both strains increased the LA production
- Higher LA concentration and yield were obtained with *P. acidilactici* as inoculum compared to *L. delbrueckii*

Experimental design

	Temperature (°C)	pН	Total solid loading (g/L)
1	20	6.25	105
2	37	4.50	105
3	55	6.25	35
4	20	8.00	70
13	37	8.00	35
14	37	6.25	70
15	37	6.25	70

LA	Predicted	Yield	Predicted
(g/L)	LA (g/L)	(gla/gaugar)	(g_{LA}/g_{sugar})
24.20	25.34	0.57	0.57
21.40	20.89	0.50	0.51
5.60	4.46	0.40	0.39
19.40	20.25	0.68	0.71
10.00	10.51	0.71	0.70
20.74	20.40	0.73	0.72
20.16	20.40	0.71	0.72

Result

		ANOVA			
		Sum of squares	Degree of freedom	Mean square	F-value P-value
LA titer	Model	692.65	9	76.96	18.06 0.0067
	Lack of fit	16.95	3	5.65	62.13 0.0929
	Pure error	0.091	1	0.091	
	R ²	0.976			
	Adjusted R ²	0.922			
LA yield	Model	0.2405	9	0.0267	19.54 0.0058
	Lack of fit	0.0054	3	0.0018	15.59 0.1836
	Pure error	0.0084	1	0.0001	
	R ²	0.978			
	Adjusted R ²	0.928			

Table 2. Analysis of variance (ANOVA) for full quadratic model

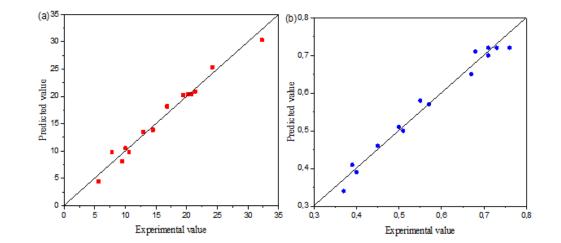


Fig. 4. The comparison of predicated value and experimental value: (a) lactic acid concentration, (b) lactic acid yield

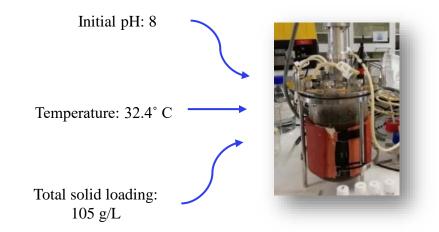
- RSM model was significant and well-described the effect of three independent variables (T, TS and pH)
- Predicted versus experimental values clustered together, indicating model could adequately fit the experimental results

The experimental data was analyzed using multiple regression analysis and the second-order model equations were obtained by fitting experimental results (X_1 =temperature; X_2 =pH and X_3 =total solid loading):

 $Y_{titer} = -33.97316 + 1.29020X_1 + 4.25510X_2 + 0.215347X_3 - 0.021224X_1X_2 - 0.001429X_1X_3 + 0.035510X_2X_3 - 0.016167X_1^2 - 0.359592X_2^2$

$-0.001164 X_3^2$

 $Y_{vield} = -0.759852 + 0.037141X_1 + 0.235645X_2 + 0.000631X_3 - 0.000748X_1X_2 + 0.000042X_1X_3 + 0.000407X_2X_3 - 0.000550X_1^2 - 0.015086X_2^2$



The optimum conditions for highest LA concentration and yield from software was at T=32.4, C=105 and initial pH = 8, and the predicted LA concentration and yield can reach 31.2 g/L and 0.735 g/g sugar .

The optimum condition of LA production from software was at T=32.4, C=120 g TS/L, initial pH = 8, and the predicted production and yield can reach 31.2 g/L and 0.735 g/g sugar.

To authenticate the output of model, duplicate Biostat A plus 3-L Fermenters (2 L working volume) were used.

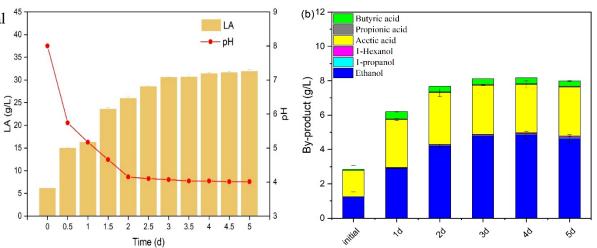


Fig. 4 Lactic acid and VFAs production of 2L fermenter at the optimum condition from model (T=32.4, C=120 g TS/L, initial pH = 8)

The highest LA titer was 31.9 ± 0.4 g/L and the LA yield was 0.742 g/g-sugar, which was in agreement with the predicted value by the model.

- The strategy of bio-augmentation could significantly enhance lactic acid production and yield from SSOHW
- Indigenous microorganisms played important role for decomposing complex sugars and complex hydrolytic method (e.g. enzyme) are not needed
- Pediococcus acidilactici was more suitable strain for bio-augmentation compared to Lactobacillus delbrueckii
- The optimum temperature, initial pH and total solid loading for fermentation process were 32.4 °C, 8 and 105 g-TS/L, achieving lactic acid concentration of 31.9 ± 0.4 g/L and yield of 0.742 g/g-sugar.

Thanks for your attention