Simultaneous removal of ammonium from landfill leachate and hydrogen sulphide from biogas using a two-stage oxic-anoxic system

J.J. González-Cortés, F. Almenglo, M. Ramírez and D. Cantero

Department of Chemical Engineering and Food Technology, University of Cadiz, Puerto Real, Cadiz, 11510, Spain

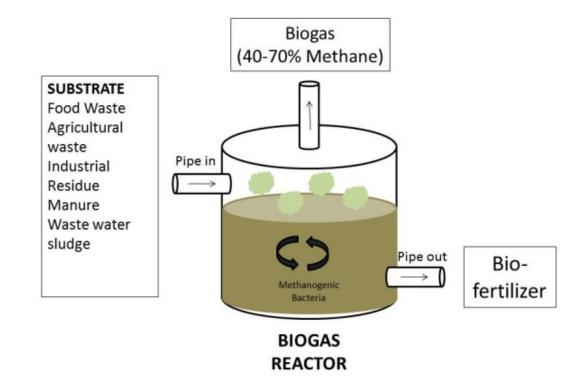
8th International Conference on Sustainable Solid Waste Management Thessaloniki, Greece, 23 - 26 JUNE 2021

Education:

 Chemical and PhD degrees by the University of Sevilla

Current Position

• Full Professor of Chemical Engineering **Research interest:**



- Effluent gases biofiltration, such as air (odour removal) and biogas (desulfurization and upgrading)
- Kinetics Modelling. Optimization.
- Bioremediation of high values metals

Publications:

- 130 scientific papers
- Supervised 13 Ph.D thesis
- more than 50 conference proceedings

Biogas production

Production: Biodegradation of organic matter by the action of microorganisms under anaerobic conditions.

Biogas production

1.- Dangerous for the environment (SO₂ emissions)

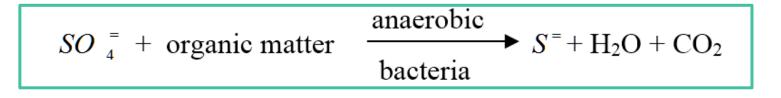
2.- Strongly corrosive to metal parts

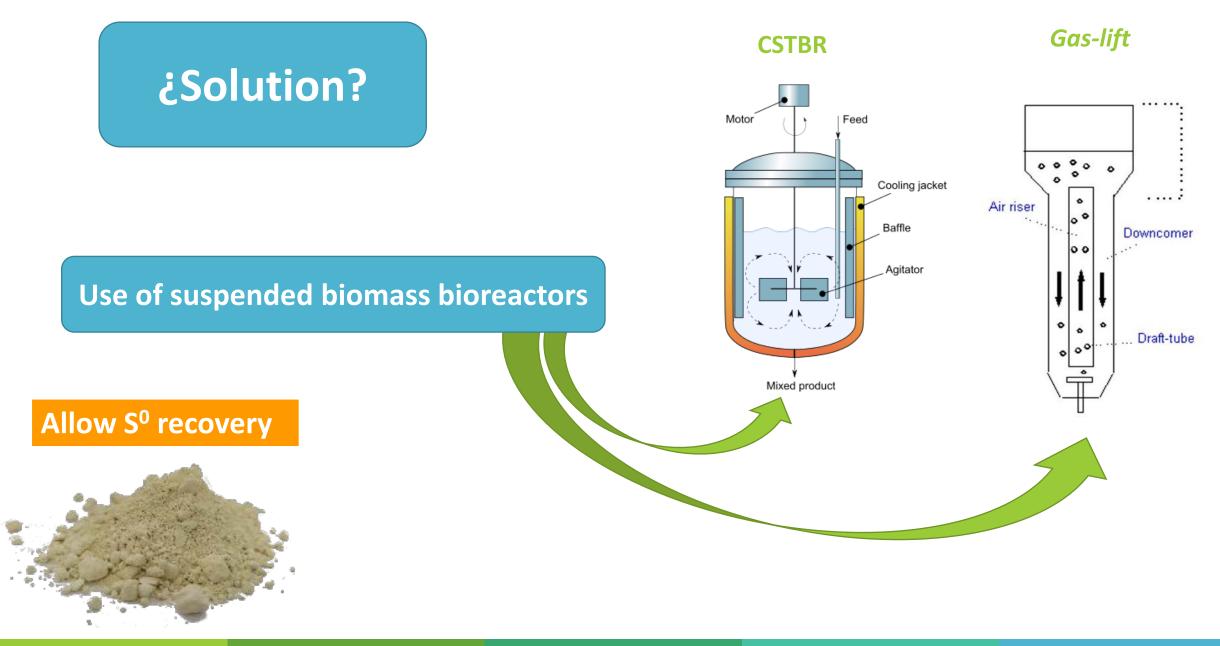
Biogas (40-70% Methane)		H ₂ S removal/reduction essential		
SUBSTRATE Food Waste Agricultural	Compound	WWTP sludge	Agricultural waste	Landfill
waste Industrial Pipe in		50-80%	50-80%	45-65%
Residue		20-50%	30-50%	34-55%
Manure Waste water	Water	Saturated	Saturated	Saturated
sludge	🧲 Н,	0-5%	0-2%	0-1%
		0-10.000ppmv	100-700ppmv	0,5-700ppmv
	NH ₃	Traces	Traces	Traces
		0-2%	0-2%	0-2%
	СО	0-1%	0-1%	Trazas
N2Production: BiodegradationVOCof microorganisms under arSiloxanes		0-3%	0-1%	0-20%
		Traces	Traces	Traces
		-	-	50mg m ⁻³

Anoxic biodesulfurization

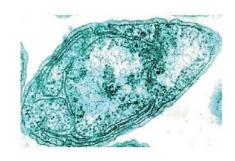
Widely studied in BTFs

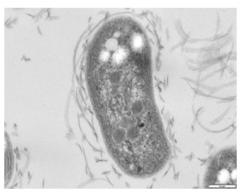
Elemental sulfur accumulation




- Blockages
- Technical stop
- Reinoculation
- Operating cost increase

Sulfate is not desirable because it can be reduced again to H₂S in anaerobic conditions





Effluent rich in nitrate a/o nitrite from a biological source

Nitrification

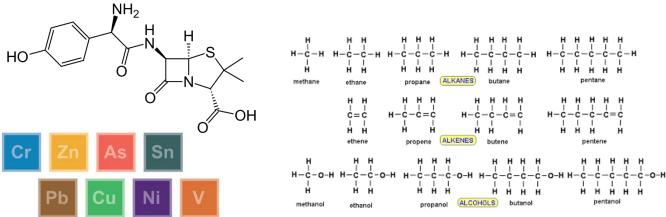
$$NH_4^+ + \frac{3}{2}O_2 \rightarrow NO_2^- + 2H^+ + H_2O$$

 $NO_2^- + \frac{1}{2}O_2 \rightarrow NO_3^-$

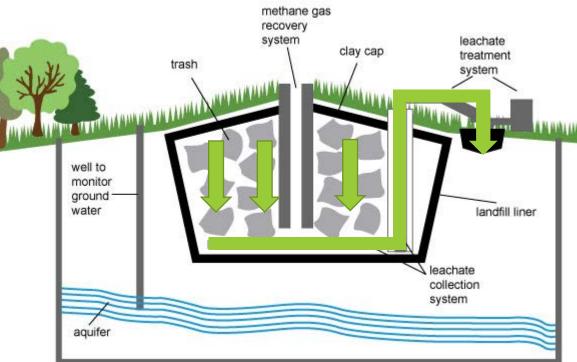
Nitrosomonas europaea

Nitrobacter winogradskyi

Landfill leachate

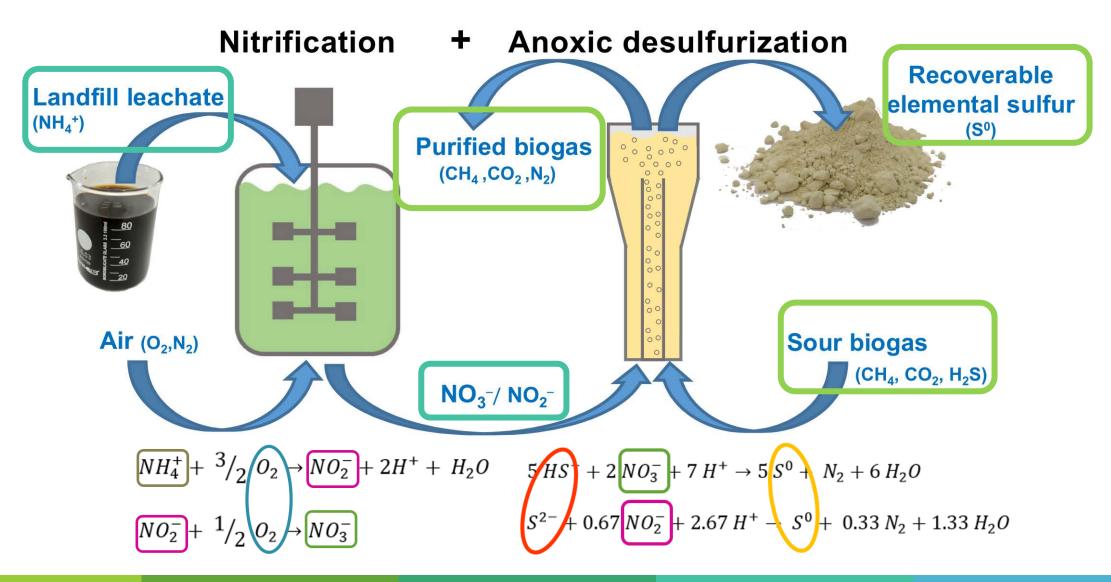

Liquid effluents generated by water percolating through the waste deposited in a landfill site

Characteristics:

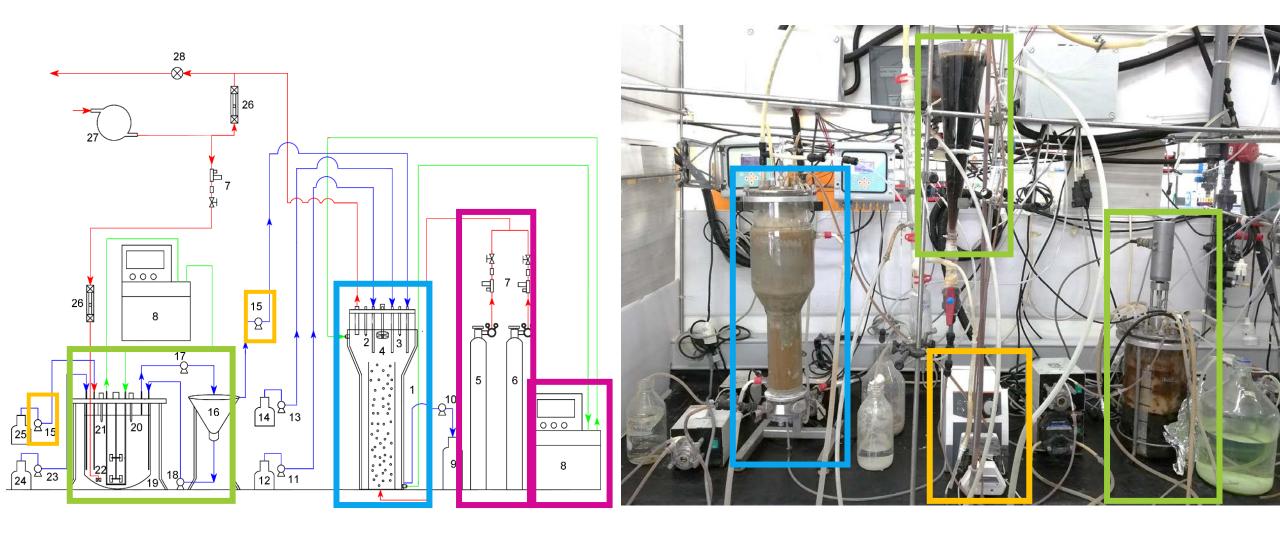

(i) High variability

(ii) High ammonium content

(iii) Presence of toxic and non-biodegradable compounds


Modern landfill

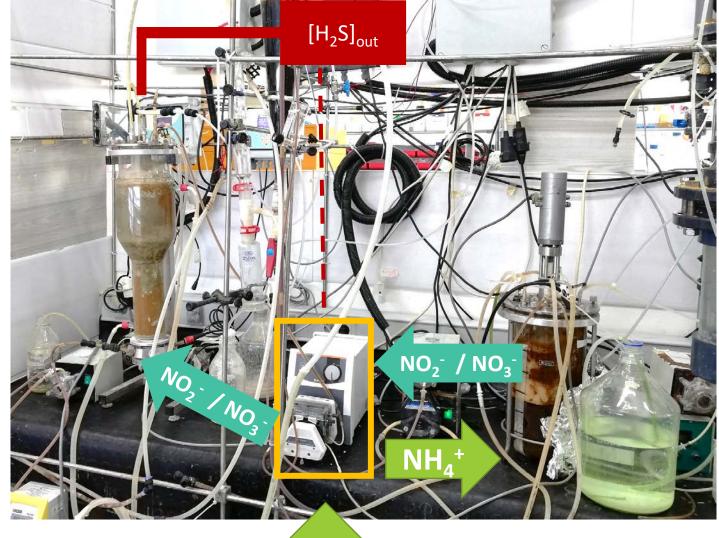
ted from National Energy Education Development Project (public domain)


1. Introduction

Integrated system of a nitrification bioreactor with anoxic biodesulfurization SBB

1. Introduction

Experimental Set-up



Control strategy

All experiments under a PI control using:

PV: $[H_2S]_{out}$

MV: Qs nitrification biorreactor effluent(NO_2^-/NO_3^-)

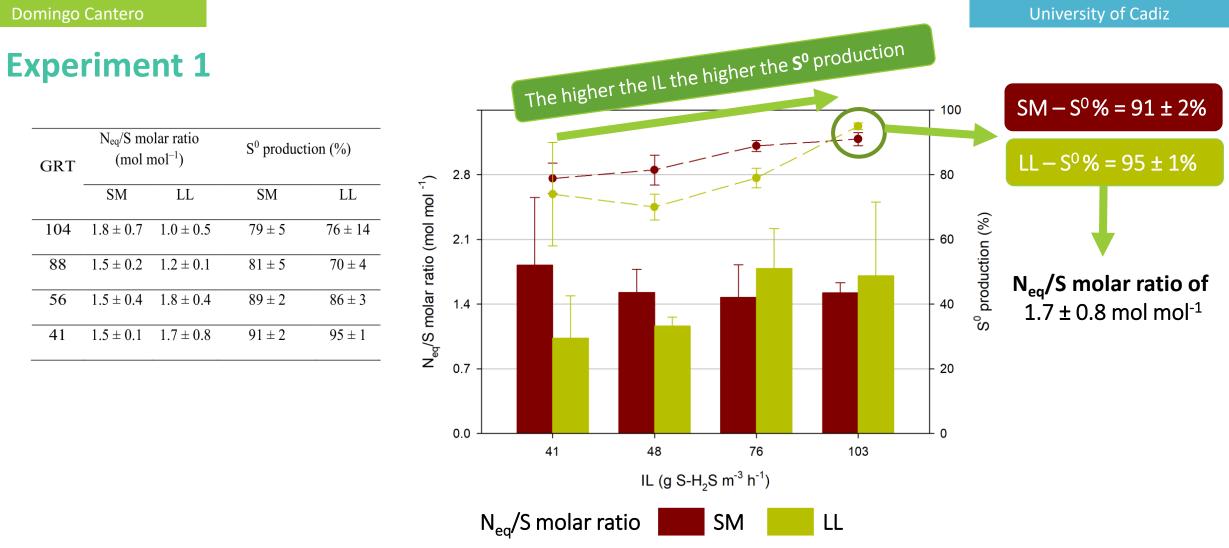
3. Methods

Experimental conditions

Exp.	GRT (s)	IL (gS-H ₂ S m ⁻³ h ⁻¹)	NH ₄ ⁺ Source*	[H ₂ S] _{in} (ppm _v)
1	104	41		
	88	48		900
	56	76	SM and LL	
	41	104		
2	79–41	56–104	SM and LL	
3	41	100–150	LL	860 - 1300
•				

* NH_4^+ concentration = 1100 mg $N-NH_4^+ L^{-1}$

Realistic H_2S concentration in biogas (900 ppm_v) and NH_4^+ in both effluents (1100 mg $N-NH_4^+ L^{-1}$) Shaha et al. (2020); Costa et al. (2019)



University of Cadiz

LL Landfill leachate

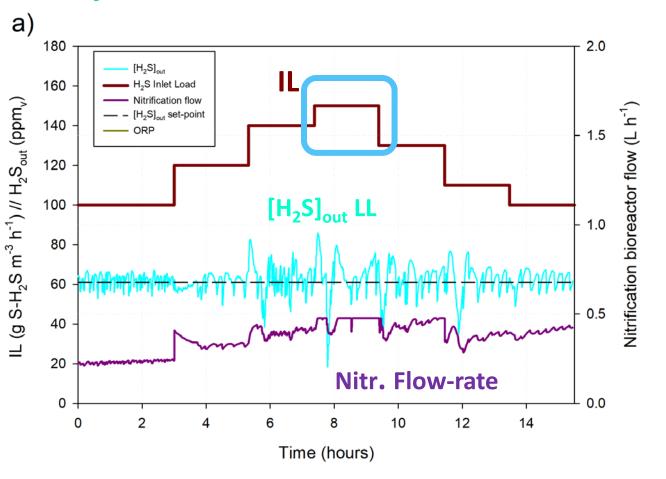
SM

LL

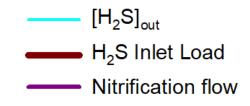
GRT

104

88

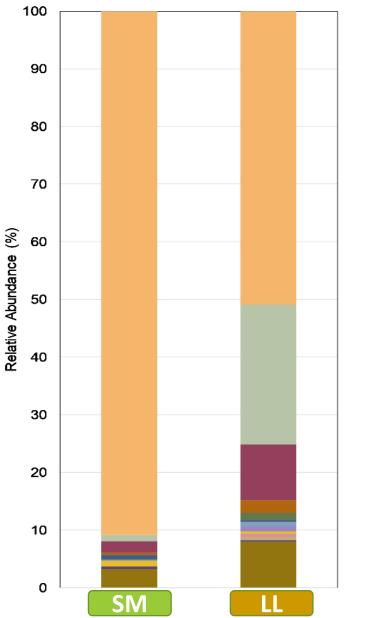

56

41


S⁰ production

Experiment 2 a) 80 180 The PI control works correctly with GRT both ammonium sources. 70 150 $[H_2S]_{out} SM 56.4 \pm 2.7 ppm_v$ 60 120 **Q** SM $0.08 \pm 0.01 \text{ L} \text{ h}^{-1}$ ┛ H_2S_{out} (ppm_v) GRT (s) $[H_2S]_{out}$ LL 56.8 ± 6.1 ppm_v 50 90 [H₂S]_{out} SM QLL $0.18 \pm 0.04 \text{ L} \text{ h}^{-1}$ 40 60 SP [H₂S]_{out} LL GRT 30 30 Synthetic medium [H₂S]_{out} Set-point Landfill leachate [H2S]out set-point 20 0 10 15 20 25 30 0 5 Time (hours)

Experiment 3



(EC= 141.18 gS-H₂S m⁻³ h⁻¹; RE = 95.0%)

Domingo Cantero

Phylogenetic analysis– Genera category

■ Thauera

Sulfurimonas

- Lentimicrobium
- Dechlorobacter
- Pseudomonas
- Blvii28 wastewater-sludge group
- Paracoccus
- Halothiobacillus
- Arcobacter
- Syner-01
- Legionella
- Desulfocurvus

Geovibrio

Others

SM

Sulfurimonas = 91.8% Lentimicrobium = 2.0% Thauera = 1.1% Arcobacter = 0.9%

LL

Sulfurimonas = 50.9% Thauera = 24.2% Lentimicrobium = 9.7% Dechlorobacter = 2.2% Pseudomonas = 1.2% Halothiobacillus = 0.7% <u>Sulfurimonas</u> Común en biorr. de desnit. autótrofa

University of Cadiz

Zeng et al. (2019), Liu et al. (2019), Maestre et al. (2009)

Useful for bioaugmentation strategy

<u>Thauera</u> Común en biorreactores tratando LL Yin et al. (2019) Saleem et al. (2018)

3. Results

University of Cadiz

- The operation of a desulfurization bioreactor with suspended biomass demonstrated its robustness using nitrite/nitrate from the oxidation of different ammonium sources such as synthetic medium and intermediate landfill leachate.
- The operation of the system demonstrated the possibility of using a nitrified effluent obtained from an intermediate landfill leachate which reduces the operating costs of the anoxic desulfurization. This novel technology can solve the problem caused by the presence of H_2S in the biogas while reducing the amount of leachate accumulated in the landfills.
- *Sulfurimonas* stands out as the most common genus in the desulfurization bioreactor, followed by the *Thauera* and *Lentimicrobium* genera.
- Definitely, the results obtained in this study provide a promising and ecologically efficient technology for producers of biogas in landfills, thus providing added value with less impact.