

Valorization of Plastic Waste with the Aid of Solar Hydrothermal Liquefaction

Nikolaos I. Tsongidis^{1, 2}, <u>Charikleia A. Poravou^{1,2}</u>, Vasiliki A. Zacharopoulou¹, Dimitrios A. Dimitrakis¹, Alexandra Zygogianni¹ and Athanasios G. Konstandopoulos^{1, 2}

¹Aerosol & Particle Technology Laboratory, CPERI/CERTH, Thessaloniki, Greece ²Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece

Overview

Introduction

- Plastic waste Industry
- ✓ Hydrothermal Liquefaction (HTL) concept
- ✓ The role of water
- ✓ Solar Hydrothermal Liquefaction (SHTL) concept
- Aim and methodology
- Preliminary HTL tests
 - ✓ Setup and experimental conditions
 - Experimental results
 - Indicative physico-chemical characterization
- Lab-scale HTL-CST coupling
- Conclusions and future work

Plastic Waste Industry

EUROPE (EU28+NO/CH), 2018

Hydrothermal Liquefaction (HTL) concept

- Thermochemical conversion of organic waste into added value products
- Suitable technique for organic waste/byproducts with high moisture
- Treatment at 250 500°C & 50 250 bar
- Use of a reducing gas and (optionally) a catalyst
- Mostly water (moisture) used as solvent in its subcritical/supercritical condition

The role of water

Temperature \uparrow leads to

Density \downarrow Dielectric constant \downarrow Ionization constant (K_w) change

- Triple role as solvent, reactant and catalyst
- Non-polar solvent in appropriate pressure and temperature
- Avoidance of feedstock drying (energy demanding step)

Solar Hydrothermal Liquefaction (SHTL) concept

- Solar energy as a power source
- Conceptual HTL & CST coupling flowsheet incl. preprocessing steps & outlet streams
- HTL tube reactor & parabolic trough system (used as an example)

Aim of this work – methodology

Preliminary HTL tests – Setup

- Preprocessing of feedstock (shredding and/or mixing)
- 1.8 L HP/HT SS autoclave reactor
- Electronic controller for temperature & stirring speed regulation
- Use of an electric heater for reactor heating

Preliminary HTL tests – Experimental conditions

Feedstock	Polypropylene flakes (PP), plastic waste mix (PWM)				
Reducing gas	N ₂				
Temperature (°C)	350, 370, 375, 400, 425, 450				
Initial Pressure (bar)	1, 20				
Residence time (min)	30				
Stirring	Continuous				
Water/waste ratio (wt%)	90/10				

PWM

PP

Products separation

Gaseous products Solvent addition

Filtration

Phase separation

Bio-oil

Products solvents:

- Dichloromethane (CH_2CI_2 , **DCM**) \rightarrow b.p. 39.6 °C (polar)
- Acetone ((CH₃)₂CO, **DMK**) \rightarrow b.p. 56.1 °C (partially polar)
- Ethyl acetate (CH₃COOCH₂CH₃, **ETAC**) \rightarrow b.p. 77.1 °C (polar)
 - Acetone was eliminated from further studies, unable to separate different phases

Preliminary HTL tests results (I)

Bio-oil yield calculation equation *

Bio – oil yield(%) =
$$\frac{w_{bio-oil}}{w_{feedstock}} \ge 100$$

W_{bio-oil}: weight of bio-oil (g) W_{feedstock}: weight of dried feedstock (g)

PWM bio-oil yield (%) for all conditions & different solvents *

Preliminary HTL tests results (II)

- PP did not convert into bio-oil at temperatures below 425°C
- Bio-oil in PP case was separated from aqueous phase without use of solvent

Experimental conditions	Bio-oil yield (%)			
400°C – 1 bar	0.0			
425°C – 1 bar	53.8			
450°C – 1 bar	45.4			
* Did not convert				

 ↔ Highest bio-oil yields observed in different experimental conditions, difficult determination of a specific experimental pattern → Bio-oil yield significantly different behavior depending on feedstock's main components

Physico-chemical characterization

Feedstock

rmogravimetric anal	ysis (TGA)	of feedstock
---------------------	------------	--------------

Inorganics analysis of plastic waste

Value (mg/Kg)		
390		
0.12		
280		
0.05		
0.4		
170		
840		

- Negligible moisture content
- 300-500°C decomposition of heavy organics
- Low percentage of inorganics >

Inorganics remaining in aqueous phase could be used in other applications (e.g. as a fertilizer)

Physico-chemical characterization

Products

Gaseous (GC)

Gaseous product	CO ₂	CH ₄	CO	C ₂ H ₄	C_3H_6	C ₂ H ₆	C ₃ H ₈
Volume ^(*) %	6.04	1.6	1.3	0.2	0.19	0.13	0.12

* The rest gaseous product volume corresponds to N_2

Bio-oil (GC-MS): fatty acids, phenols & long chain alkanes

Indicative compounds of bio-oil (GC-MS):

Benzene, 1,1'-(1,3propanediyl)bis Heptadecane Octadecane Nonadecane Eicosane Heptadecane, 2,6,10,15-tetramethyl Heneicosane 1-Propene, 3-(2-cyclopentenyl)-2-methyl-1,1-diphenyl-

Lab-scale HTL-CST coupling

- ♦ Preliminary tests of solar HTL \rightarrow Utilization of in-house Solar Simulator
- ✤ 4 ellipsoid reflectors with 6kW_{el} Xenon arc lamps
- 2L reactor arrangement designed and constructed for HTL-CST coupling tests

Proof of concept verification (II)

Electric heater *

- The reactor in Solar Simulator reaches desired temperature and pressure in less than 50% of time compared to the one in the electric heater
- Successful conditions' stabilization using the Solar Simulator

Conclusions & Future work

- ♦ Verification of successful waste feedstock conversion into value added products → **Bio-oil yield up to ~ 50%**
- HTL-CST coupling significantly speeds up the process and greatly reduces energy consumption
- Highest bio-oil yields observed in different experimental conditions predominantly depending on feedstocks' main components

Future work

- Initial pilot-scale experiments utilizing solar energy to take place within coming months
- Experimental conditions expansion: presence of catalyst
- Study of additional feedstock materials incl. agricultural residues, manure & sludge

Acknowledgments

This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call **RESEARCH** – **CREATE** – **INNOVATE** (project code: T1EDK-05079)

Thank you for your attention!

cporavou@certh.gr; agk@certh.gr

http://apt.cperi.certh.gr