

Closing the loop in agricultural waste management: co-smouldered digestate ash as alkalinity and trace element supplement for anaerobic digestion

<u>A.H. Ezieke¹</u>, A. Serrano¹, W. Clarke¹, D.K. Villa-Gomez¹

¹School of Civil Engineering, University of Queensland, St Lucia, Brisbane, 4072, Australia Corresponding author: a.ezieke@uq.net.au

8th International Conference on Sustainable Solid Waste Management, Thessaloniki, 2021

Introduction: Project background & Context

Introduction: Berry Fruit Waste Anaerobic digestion limitation

Research Needs & Questions

Inoculum

Anaerobic microbial inoculum are granular sludge collected from an UASB industrial wastewater treatment plant of the XXXX Brewery Company located in Brisbane, Australia.

Preparation

To replicate a continuous AD process, the inoculum was prepared by decanting and replacing the supernatant with an equal volume of fresh distilled water, after a settling phase.

- The substrate was berry fruit waste (BFW) collected from Sunny Ridge® farm located in the Caboolture region, Queensland, Australia.
- Ground and stored (-9.4°C) to avoid undesired fermentation.

Smouldering Ashes

Ashes were obtained from an experimental smouldering system of a mixture of 73% coco-coir waste and 27% digestate from anaerobic digestion of berry fruit and plant waste.

Biomethane Potential (BMP) Assays

- Series of triplicate BMP assays were performed in batch systems using serum bottles (160 mL)
- inoculum /substrate ratio was 2:1, in volatile solids (VS).
- Mesophilic conditions (35 ± 0.5 °C)

Assays and controls

- Alkalinity required for the stable anaerobic digestion of berry fruit waste with NaHCO₃ as alkalinity buffer (0 alkalinity)
- \succ The effect of ashes as a source of alkalinity (Test with NaHCO₃)
- > The effect of ashes as TE source (Test with $NaHCO_3$)

Question 1: What is the minimal NaHCO₃ alkalinity required for AD of Berry Fruit Waste?

Question 1: What is the minimal NaHCO₃ alkalinity required for AD of Berry Fruit Waste?

Total alkalinity (mg CaCO ₃ /L)	308	553	1053	2053	3303
Added NaHCO ₃ (mg CaCO ₃ /L)	0 (control)	245	745	1745	2995
Biogas composition					
CH ₄ content (%)				59.3 ± 0.1	59.5 ± 1.5
CO ₂ content (%)	• •	4±0.1	40.0 ± 0.9		
N_2 content (%)	Minim	al Alkal	inity		0.4 ± 0.4
O_2 content (%)	1052		<d.l.< td=""></d.l.<>		
Effluent characterization	T023	mg cacu	J 3 / L)	
рН	45 mg/		dosed)		7.8 ± 0.1
IA/PA ratio	43 116/		aoscaj	.z3 ± 0.04	0.19 ± 0.05
Alkalinity (mg CaCO ₃ /L)			-12	3375 ± 375	3167 ± 577
sCOD (mg O ₂ /L)	4637 ± 259	129 ± 136	81 ± 4	82 ± 4	92 ± 3
Acetic acid (mg O_2/L)	1304 ± 66	3 ± 1	n.d.	n.d.	n.d.
Propionic acid (mg O ₂ /L)	130 ± 14	<d.l.< th=""><th>n.d.</th><th>n.d.</th><th>n.d.</th></d.l.<>	n.d.	n.d.	n.d.
Butyric acid (mg O ₂ /L)	1390 ± 59	<d.l.< td=""><td>n.d.</td><td>n.d.</td><td>n.d.</td></d.l.<>	n.d.	n.d.	n.d.
Valeric acid (mg O ₂ /L)	337 ± 28	2 ± 1	n.d.	n.d.	n.d.
Hexanoic acid (mg O ₂ /L)	99 ± 11	<d.l.< th=""><th>n.d.</th><th>n.d.</th><th>n.d</th></d.l.<>	n.d.	n.d.	n.d

Question 2: Can the required alkalinity for AD of fruit waste be provided by smouldering ashes?

Question 2: Can the required alkalinity for AD of fruit waste be provided by smouldering ashes?

Total alkalinity (mg CaCO ₃ /L)	308	1053	1053
Added NaHCO ₃ (mg CaCO3/L)	0	745	0
Added Ashes (mg CaCO ₃ /L)	0	0	745
Biogas composition			
CH_4 content (%)	61.7 ± 3.6	64.6 ± 0.4	67.9 ± 0.3
CO ₂ content (%)	38.1 ± 3.6	35.4 ± 0.4	32.1 ± 0.3
N ₂ content (%)	0.2 ± 0.0	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
O_2 content (%)	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
Effluent characterization			
рН	5.3 ± 0.2	7.5 ± 0.1	7.9 ± 0.1
IA/PA ratio	>D.L.	0.38 ± 0.03	0.46 ± 0.07
Alkalinity (mg CaCO ₃ /L)	469 ± 63	2268 ± 28	5421 ± 233
sCOD (mg O ₂ /L)	4426 ± 471	293 ± 12	270 ± 14
Acetic acid (mg O ₂ /L)	1266 ± 93	4 ± 1	4 ± 0
Propionic acid (mg O ₂ /L)	134 ± 15	1 ± 0	1 ± 0
Butyric acid (mg O ₂ /L)	1290 ± 228	1 ± 0	1 ± 0
Valeric acid (mg O ₂ /L)	345 ± 30	1 ± 0	1 ± 0
Hexanoic acid (mg O ₂ /L)	85 ± 29	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>

Question 2: Can the required alkalinity for AD of fruit waste be provided by smouldering ashes?

Electrical conductivity from BMP of BFW at alkalinity equivalent of 1053 mg CaCO $_3$ /L from ash

Question 2: Can the required alkalinity for AD of fruit waste be provided by

Question 3: Can ashes provide essential trace elements (TEs) to improve the efficiency of AD of fruit waste?

Question 3: Can ashes provide essential trace elements (TEs) to improve the efficiency of AD of fruit waste?

Ash dosage (mg ash/L)	Control	12	306	1520	7574
Biogas composition					
CH ₄ content (%)	64.6 ± 0.4	64.0 ± 1.3	63.8 ± 0.4	64.0 ± 0.1	65.0 ± 0.4
CO ₂ content (%)	35.4 ± 0.4	36.0 ± 1.3	36.2 ± 0.4	36.0 ± 0.1	35.0 ± 0.4
N ₂ content (%)	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
O ₂ content (%)	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
Effluent characterization					
pH	7.5 ± 0.1	7.41 ± 0.08	7.41 ± 0.01	7.43 ± 0.03	7.67 ± 0.03
Alkalinity ratio (IA/PA)	0.38 ± 0.03	0.24 ± 0.09	0.25 ± 0.06	0.33 ± 0.03	0.43 ± 0.06
Alkalinity (mg CaCO ₃ /L)	2268 ± 104	2435 ± 61	2475 ± 115	2621 ± 165	3925 ± 156
sCOD (mg O ₂ /L)	293 ± 12	350 ± 8	283 ± 5	243 ± 17	227 ± 21
Acetic acid (mg O ₂ /L)	4 ± 1	2 ± 0	4 ± 1	4 ± 0	4 ± 0
Propionic acid (mg O ₂ /L)	2 ± 0	1 ± 0	1 ± 0	1 ± 0	1 ± 0
Butyric acid (mg O ₂ /L)	1 ± 0	1 ± 0	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
Valeric acid (mg O ₂ /L)	1 ± 0	1 ± 1	<d.l.< td=""><td><d.l.< td=""><td><d. l.<="" td=""></d.></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d. l.<="" td=""></d.></td></d.l.<>	<d. l.<="" td=""></d.>
Hexanoic acid (mg O ₂ /L)	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>

Question 3: Can ashes provide essential trace elements (TEs) to improve the efficiency of AD of fruit waste?

Question 3: Can ashes provide essential trace elements (TEs) to improve the efficiency of AD of fruit waste?

Conclusion

Total alkalinity of 1053 mg/L CaCO₃ from dosing 745 mg/L CaCO₃ from NaHCO₃ provides the minimal alkalinity for berry fruit waste AD

Equivalent total alkalinity (1053 mg/L CaCO₃) from dosing co-smouldered digestate ash inhibit methane yield

Compared to AD system with bicarbonate buffer Equivalent total alkalinity (1053 mg/L CaCO₃) from dosing co-smouldered digestate ash enhanced production rate

In an already buffered system, incremental addition of co-smouldered digestate ashes as TEs source inhibits the methane yield but enhances methane production rate

Conclusion

Minimal total alkalinity (1053 mg/L CaCO₃) from dosing co-smouldered digestate ash enhanced methane yield

Compared to AD system with no added buffer Minimal total alkalinity (1053 mg/L CaCO₃) from dosing co-smouldered digestate ash enhanced production rate

Conclusion

When reactor volume reduction dominates the economics of the AD system deployment, co-smouldered digestate ash could be an effective inexpensive material for replacement of synthetic (NaHCO₃) buffers in AD of berry fruit waste. Thus, could enhance the economic and technical feasibility of integrating AD and smouldering for closed loop management of berry agricultural residues.

Thank you for your time ...

Corresponding author: Email: a.ezieke@uq.net.au LinkedIn: Arinze Ezieke