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Introduction: Project background & Context
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Introduction: Berry Fruit Waste Anaerobic digestion limitation

 Inorganic chemicals
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 By-product waste = 
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Research Needs & Questions
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Problem

Question 3Question 1

Contribution

Minimal NaHCO3 alkalinity for 
AD of berry fruit waste?

Can ashes provide trace 
elements for improved 

efficiency?

Rapid acidification of AD of putrescible fruit waste

Knowledge that will enhance the 
efficiency and cost of AD of fruit wastes

Question 2

Can ashes provide the 
minimal alkalinity?



Materials and methods

Inoculum
 Anaerobic microbial inoculum are 

granular sludge collected from an UASB 
industrial wastewater treatment plant 
of the XXXX Brewery Company located 
in Brisbane, Australia.

Preparation

Settling 
phase

Supernatant

Inoculum

Distilled 
Water Supernatant

 To replicate a continuous AD process, the 
inoculum was prepared by decanting and 
replacing the supernatant with an equal 
volume of fresh distilled water, after a 
settling phase. 



Materials and methods

Substrate

Smouldering Ashes

 The substrate was berry fruit waste (BFW) 
collected from Sunny Ridge® farm located in 
the Caboolture region, Queensland, Australia.

 Ground and stored (-9.4oC) to avoid undesired 
fermentation.

 Ashes were obtained from an experimental smouldering system of a mixture of 73% coco-coir waste and
27% digestate from anaerobic digestion of berry fruit and plant waste.

DIGESTATE Ashes
Berry Fruit

Berry Plant

AD

Smouldering



Materials and methods

Biomethane Potential (BMP) Assays 

Assays and controls

 Series of triplicate BMP assays were performed in batch 
systems using serum bottles (160 mL) 

 inoculum /substrate ratio was 2:1, in volatile solids (VS).

 Mesophilic conditions (35 ± 0.5 oC) 

 Alkalinity required for the stable anaerobic digestion of berry fruit waste 
with NaHCO3 as alkalinity buffer (0 alkalinity)

 The effect of ashes as a source of alkalinity (Test with NaHCO3)

 The effect of ashes as TE source (Test with NaHCO3)



Materials and methods

Ash analytical characteristics 
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Research outcome
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RESULTS



Results
Question 1: What is the minimal NaHCO3 alkalinity required for AD of 

Berry Fruit Waste?
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Results
Question 1: What is the minimal NaHCO3 alkalinity required for AD of 

Berry Fruit Waste?
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Total alkalinity (mg CaCO3/L) 308 553 1053 2053 3303

Added NaHCO3 (mg CaCO3/L) 0 (control) 245 745 1745 2995

Biogas composition

CH4 content (%) 52.0 ± 1.4 53.8 ± 0.5 58.6 ± 0.1 59.3 ± 0.1 59.5 ± 1.5

CO2 content (%) 47.2 ± 1.4 45.6 ± 0.9 40.7 ± 0.1 40.4 ± 0.1 40.0 ± 0.9

N2 content (%) 0.4 ± 0.1 0.4 ± 0.4 0.6 ± 0.2 0.2 ± 0.1 0.4 ± 0.4

O2 content (%) <D.L. <D.L. <D.L. <D.L. <D.L.

Effluent characterization

pH 5.2 ± 0.1 7.2 ± 0.1 7.2 ± 0.2 7.5 ± 0.1 7.8 ± 0.1

IA/PA ratio - 0.69 ± 0.05 0.21 ± 0.02 0.23 ± 0.04 0.19 ± 0.05

Alkalinity (mg CaCO3/L) 458 ± 72 1125 ± 217 1458 ± 72 3375 ± 375 3167 ± 577

sCOD (mg O2/L) 4637 ± 259 129 ± 136 81 ± 4 82 ± 4 92 ± 3

Acetic acid (mg O2/L) 1304 ± 66 3 ± 1 n.d. n.d. n.d.

Propionic acid (mg O2/L) 130 ± 14 <D.L. n.d. n.d. n.d.

Butyric acid (mg O2/L) 1390 ± 59 <D.L. n.d. n.d. n.d.

Valeric acid (mg O2/L) 337 ± 28 2 ± 1 n.d. n.d. n.d.

Hexanoic acid (mg O2/L) 99 ± 11 <D.L. n.d. n.d. n.d.

Minimal Alkalinity 
1053 mg CaCO3/L 

(745 mg/L CaCO3 dosed)
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Results
Question 2: Can the required alkalinity for AD of fruit waste be provided 

by smouldering ashes?
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Results
Question 2: Can the required alkalinity for AD of fruit waste be provided by 

smouldering ashes?
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Total alkalinity (mg CaCO3/L) 308 1053 1053

Added NaHCO3 (mg CaCO3/L) 0 745 0

Added Ashes (mg CaCO3/L) 0 0 745

Biogas composition

CH4 content (%) 61.7 ± 3.6 64.6 ± 0.4 67.9 ± 0.3

CO2 content (%) 38.1 ± 3.6 35.4 ± 0.4 32.1 ± 0.3

N2 content (%) 0.2 ± 0.0 <D.L. <D.L.

O2 content (%) <D.L. <D.L. <D.L.

Effluent characterization

pH 5.3 ± 0.2 7.5 ± 0.1 7.9 ± 0.1

IA/PA ratio >D.L. 0.38 ± 0.03 0.46 ± 0.07

Alkalinity (mg CaCO3/L) 469 ± 63 2268 ± 28 5421 ± 233

sCOD (mg O2/L) 4426 ± 471 293 ± 12 270 ± 14

Acetic acid (mg O2/L) 1266 ± 93 4 ± 1 4 ± 0

Propionic acid (mg O2/L) 134 ± 15 1 ± 0 1 ± 0

Butyric acid (mg O2/L) 1290 ± 228 1 ± 0 1 ± 0

Valeric acid (mg O2/L) 345 ± 30 1 ± 0 1 ± 0

Hexanoic acid (mg O2/L) 85 ± 29 <D.L. <D.L.



Results
Question 2: Can the required alkalinity for AD of fruit waste be provided by 

smouldering ashes?
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Results
Question 2: Can the required alkalinity for AD of fruit waste be provided by 

smouldering ashes?
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Results
Question 3: Can ashes provide essential trace elements (TEs) to improve 

the efficiency of AD of fruit waste?
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Results
Question 3: Can ashes provide essential trace elements (TEs) to improve 

the efficiency of AD of fruit waste?
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Ash dosage (mg ash/L) Control 12 306 1520 7574 

Biogas composition      

CH4 content (%) 64.6 ± 0.4 64.0 ± 1.3 63.8 ± 0.4 64.0 ± 0.1 65.0 ± 0.4 

CO2 content (%) 35.4 ± 0.4 36.0 ± 1.3 36.2 ± 0.4 36.0 ± 0.1 35.0 ± 0.4 

N2 content (%) <D.L. <D.L. <D.L. <D.L. <D.L. 

O2 content (%) <D.L. <D.L. <D.L. <D.L. <D.L. 

Effluent characterization      

pH 7.5 ± 0.1 7.41 ± 0.08 7.41 ± 0.01 7.43 ± 0.03 7.67 ± 0.03 

Alkalinity ratio (IA/PA) 0.38 ± 0.03 0.24 ± 0.09 0.25 ± 0.06 0.33 ± 0.03 0.43 ± 0.06 

Alkalinity (mg CaCO3/L) 2268 ± 104 2435 ± 61 2475 ± 115 2621 ± 165 3925 ± 156 

sCOD (mg O2/L) 293 ± 12 350 ± 8 283 ± 5 243 ± 17 227 ± 21 

Acetic acid (mg O2/L) 4 ± 1 2 ± 0 4 ± 1 4 ± 0 4 ± 0 

Propionic acid (mg O2/L) 2 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 

Butyric acid (mg O2/L) 1 ± 0 1 ± 0 <D.L. <D.L. <D.L. 

Valeric acid (mg O2/L) 1 ± 0 1 ± 1 <D.L. <D.L. <D. L. 

Hexanoic acid (mg O2/L) <D.L. <D.L. <D.L. <D.L. <D.L. 

 



Results
Question 3: Can ashes provide essential trace elements (TEs) to improve the 

efficiency of AD of fruit waste?
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Results
Question 3: Can ashes provide essential trace elements (TEs) to improve the 

efficiency of AD of fruit waste?
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Conclusion
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Total alkalinity of 1053 mg/L CaCO3 from dosing 
745 mg/L CaCO3 from NaHCO3 provides the 
minimal alkalinity for berry fruit waste AD 

In an already buffered system, incremental 
addition of co-smouldered digestate ashes as 

TEs source inhibits the methane yield but 
enhances methane production rate

Equivalent total alkalinity 
(1053 mg/L CaCO3) from 

dosing co-smouldered 
digestate ash enhanced 

production rate

Equivalent total alkalinity 
(1053 mg/L CaCO3) from 

dosing co-smouldered 
digestate ash inhibit 

methane yield

Compared to AD 
system with 

bicarbonate buffer



Conclusion

21

Minimal total alkalinity 
(1053 mg/L CaCO3) from 

dosing co-smouldered 
digestate ash enhanced 

production rate

Minimal total alkalinity 
(1053 mg/L CaCO3) from 

dosing co-smouldered 
digestate ash enhanced 

methane yield

Compared to AD 
system with no 
added buffer



Conclusion
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When reactor volume reduction dominates the economics of 
the AD system deployment, co-smouldered digestate ash 

could be an effective inexpensive material for replacement of 
synthetic (NaHCO3) buffers in AD of berry fruit waste. Thus, 

could enhance the economic and technical feasibility of 
integrating AD and smouldering for closed loop management 

of berry agricultural residues.    



Thank you for your time …
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