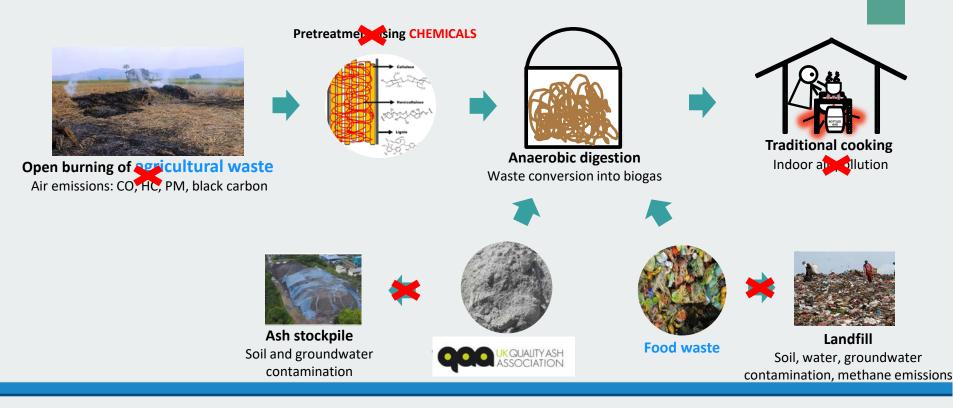


Pretreatment of lignocellulosic agricultural wastes using coal fly ash to enhance methane production by anaerobic digestion

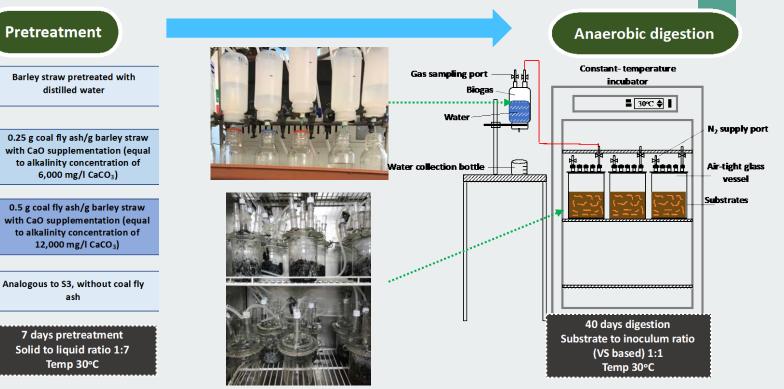
M. Dewiandratika, S.M. Grimes, S.R. Smith


Thessaloniki 2021 8th International Conference on Sustainable Solid Waste Management

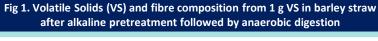
23-25 June 2021

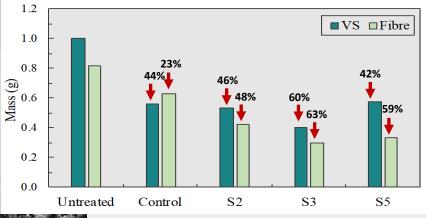
lembaga pengelola dana pendidikar

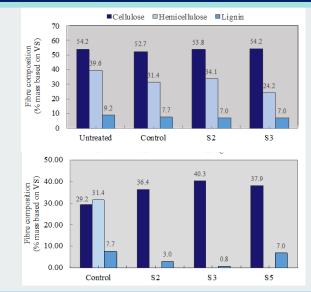
Background

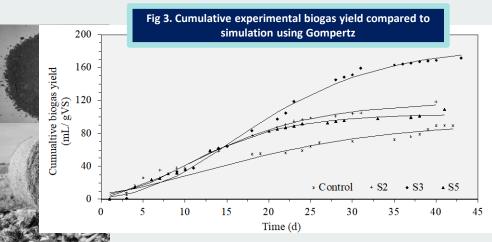


S3


S5

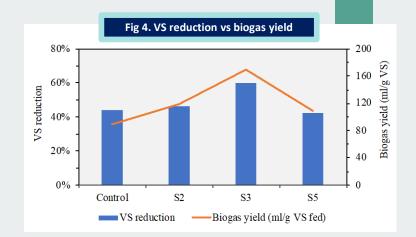

Methods


Results



- In all pretreatment conditions, 16%-24% of lignin and 20.7% -39% of hemicellulose were solubilized. No significant changes in the cellulose composition were observed
- Significant reduction in all fibre components in the digested straw compared to pretreated straw → remaining components in pretreated straw can be easily utilised during AD

Fig 2. Fibre compositions after pretreatment (above) and after anaerobic digestion (below)



- In AD, the hemicellulose was converted entirely into soluble fraction, except that in control
- Higher alkaline concentration (S3) leads to higher hemicellulose solubilization in pretreatment

		Maximum biogas yield (ml biogas/g VS)		
		Based on experiment	Based on modified Gompertz model (ml biogas/g VS)	R ²
3	Control	89	94	0.9674
(書)	S2	118	118	0.9914
0	S3	171	187	0.9955
1000	S5	109	104	0.9952
MIC .				

Results

- The biogas yield in S3 is higher than its control (S5) --> there is an interaction between coal fly ash with the biogas yield
- The biogas yield in S2, S3 and S5 is 32.5%, 92%, 22% higher compared to control
- The coefficient of determination (R²) are close to 1, showing the experimental cumulative biogas yields are very close to the simulated values
- High alkalinity (11,000 mg/l CaCO₃) used in the pretreatment did not interfere with the AD process

Conclusions

- Alkaline pretreatment using coal fly ash supplemented by CaO solubilized hemicellulose and lignin and made all fibre components easier to digest in subsequent anaerobic digestion
- Biogas yield and VS reduction from the sample with coal fly ash addition were 55% and 39% higher respectively, compared to the sample under the same pretreatment conditions without coal fly ash
- Biogas yield and VS reduction from the sample with coal fly ash addition were 90% and 24% higher respectively, compared to the sample pretreated with water
- The synergistic effect may be attributed to the **supplementation of trace elements** from coal fly ash