

Valorisation of spent tire rubber as carbon adsorbents for Pb(II) and W(VI) recovery in the framework of a circular economy

Maria Bernardo¹, Daniel Dores¹, Nuno Lapa¹, Filomena Pinto¹, Inês Matos¹,

Márcia Ventura¹, Isabel Fonseca¹

¹NOVA School of Science and Technology, Caparica, Portugal ² National Laboratory of Energy and Geology, Lisbon, Portugal

²⁴ June 2021

FRAMEWORK

Chemical Recycling by Pyrolysis

- 10 million tons/year in Europe
- Composed by critical raw materials, such as Tungsten (W)
- And potentially toxic elements, such as Lead (Pb)
- Its recovery from wastewaters/hydrometallurgical effluents is mandatory

OBJECTIVE

PYROLYSIS ASSAYS

Pyrolysis reactor

Oil

Gas

Spent tire rubber

Char

Activated Carbon

RECOVERY ASSAYS

SLNEG N

Aqueous medium with W(VI) and Pb(II)

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

EXPERIMENTAL

PYROLYSIS ASSAYS

Spent tire rubber

- Sample B es Heavy trucks
- Elemental analysis
- TGA
- Ash content
- Mineral content

Temperature – 405 °C Reaction time – 30 min Heating rate - 5°C/min N₂ atmosphere

Chars

Sequential extraction: hexane → acetone → water

Char A (CA) and Char B (CB)

- Elemental analysis
- TGA
- Ash content
- Mineral content
- pH_{PZC}
- XRPD
- FTIR
- N2 adsorption isotherms at 77 K

EXPERIMENTAL

CHAR ACTIVATION

Activation reactor

CA and CB

Chemical activation with H_3PO_4 Impregnation mass ratio - 1:1 Temperature - 500 °C Reaction time - 2 h N_2 flow - 150 ml/min Activated Carbons CA - CO2 CB - CO2

 \square

Activated Carbons CA - H3PO4 CB - H3PO4

....

24 June 2021

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Samples characterization

Elemental analysis, ash content and pH_{PZC} of rubber and carbon samples

	C (%)	H (%)	N (%)	S (%)	Ashes (%)	рН _{РZC}
Rubber A	79.20	7.07	0.40	1.64	9.16	n.d.
Rubber B	83.39	7.60	0.40	2.04	3.92	n.d.
CA	71.33	0.71	0.28	2.51	21.4	7.4
СВ	79.06	0.86	0.33	3.94	13.9	6.7
CA-H3PO4	69.00	0.52	0.20	0.42	23.8	3.0
CB-H3PO4	70.16	0.48	0.24	0.44	21.3	2.8
CA-CO2	70.26	0.16	0.23	2.90	27.3	8.5
CB-CO2	76.26	0.14	0.29	3.70	17.5	7.8

Samples characterization

Textural properties

	A _{BET}	V_{total}	V _{micro}	V _{meso}
	(m²/g)	(cm³/g)	(cm³/g)	(cm³/g)
СА	73	0.13	0.01	0.12
СВ	90	0.13	0.02	0.11
CA-H3PO4	48	0.11	0.004	0.11
CB-H3PO4	42	0.09	0.004	0.09
CA-CO2	95	0.14	0.02	0.12
CB-CO2	104	0.12	0.03	0.09

Mineral content

Concentration (mg/g)	Rubber A	Rubber B	CA	СВ	
Zn	29.2	38.6	69.6	93.5	
Са	13.0	6.38	21.9	11.9	
Fe	2.18	4.25	4.96	8.75	
Mg	0.815	0.870	1.79	1.74	
Cu	0.473	1.02	0.318	1.63	
Pb	0.081	0.043	0.118	0.112	
Ti	0.067	<0.004	< 0.004	<0.004	
Mn	0.029	0.025	0.052	0.059	
Ва	0.202	<4x10 ⁻⁵	<4x10 ⁻⁵	<4x10 ⁻⁵	
Cr	0.002	0.006	0.008	0.010	
Ni	0.004	0.004	0.012	0.016	
Мо	<4x10 ⁻⁴	<4x10 ⁻⁴	0.036	0.120	

Adsorption assays

Removal of Pb(II) at pH of 5

Removal of W(VI) at pH of 2

- Higher removals of Pb(II) and W(VI) ions were obtained for initial pH values of 5 and 2, respectively
- Cation exchange presumable mechanism of Pb(II) ion removal
- Electrostatic attraction W (VI) oxyanions removal

Kinetic assays

Kinetic data of Pb(II) ions adsorption adjusted to pseudo 2nd order kinetic model

Kinetic data of W(VI) ions adsorption adjusted to pseudo 2nd order kinetic model

		Pb(II)	W(VI)			
	q _e (mg/g)	k ₂ (g/mg.min)	R²	q _e (mg/g)	k ₂ (g/mg.min)	R²
СА	43.0	0.004	0.967	33.1	0.001	0.932
CA-CO2	68.8	0.031	0.897	27.9	0.548	0.937
СВ	62.9	0.002	0.934	12.4	0.03	0.986
CB-CO2	93.6	0.013	0.603	28.6	0.286	0.776

- Equilibrium time 48 h •
- Samples from CO₂ activation higher uptake capacities and • kinetic constants
- CO₂ activated carbon richer in exchangeable cations •

60

70

THESSALONIKIZOZI										÷.	l	TEGN VA SCHOOL OF SCIENCE & TECHNOLOGY	
8 th Internation Sustainab Mana	quilik	orium a	issa	ays –	adsor	otion	isothe	rm	s valorpneu				
	Pb(II) adsor	ption	is othern	<mark>ns</mark> adjເ	usted to			W(VI) adsorption isotherms adjusted to Langmuir					
		Langm	nuir mod	lel				model					
$ \begin{array}{c} 50 \\ 40 \\ 40 \\ \hline 0 \\ 20 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 20 \\ 40 \\ 60 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$						I Model	$\begin{array}{c} 35\\ 30\\ 25\\ 0\\ 25\\ 0\\ 15\\ 0\\ 0\\ 20\\ 15\\ 0\\ 0\\ 20\\ 40\\ 60\\ 80\\ 100\\ 120\\ 140\\ C_e (mg/L) \end{array}$						
			Pb	(II)				W	VI)				
		CA	CA-CO2	СВ	CB-CO2		CA	CA-CO2	СВ	CB-CO2			
rir	q _m (mg/g)	39.1	103	62.1	116		23.3	27.1	13.5	30.7	•	Best fitting model – Langmuir – monolayer adsorption	
Langn	K _L (L/mg)	1.31	2.06	0.049	1.77		0.461	0.508	0.346	0.430		Samples from CO activation	
	R ²	0.978	0.899	0.961	0.955		0.930	0.936	0.749	0.921		samples from CO_2 activation –	
llich	K _F (mg/g)(mg/L) ⁿ	21.3	52.8	12.4	60.5		12.4	16.7	9.10	16.9		capacities and Langmuir constants	
Freund	n (dimensionless)	7.46	5.71	3.26	6.41		7.35	9.26	13.3	7.81			
	R ²	0.911	0.821	0.959	0.915		0.884	0.855	0.689	0.921		15	

CONCLUSIONS

H₃PO₄ activated chars:

- Lower surface areas than the raw chars
- Acidic surface chemistry affected their performance
- Low content of exchangeable cations
- CO₂ activated chars:
- Increased surface areas
- Increased mineral content
- High content of exchangeable cations
- Higher uptake capacities for both Pb(II) and W(VI) ions

Valorisation of spent tire rubber through pyrolysis and activation of the obtained chars - viable alternative to obtain efficient adsorbents of critical metallic elements.

Valorisation of spent tire rubber as carbon adsorbents for Pb(II) and W(VI) recovery in the framework of a circular economy

THANK YOU

