A citizen science-based approach to promote circular economy in the context of a fast-growing insect industry

Thessaloniki2021
Thomas Klammsteiner
Department of Microbiology – University of Innsbruck
Mail: thomas.klammsteiner@uibk.ac.at
Web: www.fromwastetofeed.com
Outline

1. Background

2. Motivation & Citizen Science

3. Workshops
 • For schools
 • For citizens

4. Conclusion
Background

Advantages of insect farming over traditional livestock

• Low water consumption
• Less land use due to verticalization
• Lower GHG emissions
• Higher feed conversion efficiency
• Higher percentage of digestible bodymass
Background

Prospects for insect mass-rearing

• Currently mainly for aquaculture, growing market for pet food. Approval for poultry and pigs ahead.

• Annual production of >5 million tons of insect protein by 2030

• Black soldier fly market predictions:
 • Annual growth of 35%
 • Market volume >$ 3 billion by 2030

• Exponential increase on scientific publications
 • >240 publications on the black soldier fly in 2020, compared to only 17 publications in 2015
Background

Black soldier fly *(Hermetia illucens)*

- Can grow on e.g.:
 - Agro-industrial side streams
 - Food wastes
 - Animal manure
 - Human excrements
- High protein and fat content
- Rearing residues for fertilization

Figure 1: Larval nutrient composition. (Liland *et al.* 2017)

Figure 2: Life cycle in a lab-reared black soldier fly population.
Figure 3: Overview on the insect-related research topics of our working group.
Motivation for this project

Social acceptance of insects as feed and food

• No recent history of entomophagy in Europe
• Aversion towards insects spreads to “insect eating cultures”
• Emerging industry, products are still expensive
• Westerners prefer indirect insect consumption:
 • traditional livestock fed with insects
• Stigmatization due to association with waste management
Citizen Science

• Growing interest since the 1990s
 • Started in the field of biology, ecology, and conservation
 • Recent studies engage citizens to tackle socio-ecological questions: e.g. food losses and food wastes

• Valuable complement to hypothesis-driven research

• Generation of large datasets by including large groups of citizens

• **Crucial**: Scientific support & standardization for data acquisition
Workshops

What was the goal of this project?

Raise awareness about socio-ecological problems

Keywords: excessive soy farming, increasing fishmeal demand, environmental footprint of traditional livestock

Introduce people to the benefits of insect farming

Keywords: modularity, circular economy, investment opportunity

Highlight the benefits of insect-based food & feed

Keywords: nutrient content, bioconversion efficiency, useable biomass, ethics

Counteract prejudice against insects

Keywords: hands-on experiences, spread knowledge, independent work

Figure 4: Citizen Scientists setting up their rearing system.
How does it work?

Our initial requirements:
- Easy to handle
- Reusable & sustainable
- Low-cost

What we ended up with:
- Appealing & functional system
- Dismountable
- Easy to repair
- Total costs: approx. 33 €
 - Includes precision scale, tweezers, lab journal
- **Most important**: suitable for the rearing of larvae

Figure 5: Rearing system for black soldier fly larvae.
How does it work?

- **Inside**: plastic bucket
- **Outside**: wooden structure
- **Ideal substrate**:
 - vegetable kitchen waste
 - processed food wastes
 - Preferrably no meat
 - If well-balanced, low on odour
 - Approximate runtime 2-3 weeks depending on substrate

Figure 6: Exploded view of the rearing system.
How does it work?

- **Self-harvesting**: appropriately angled ramp for larval migration
- **Tightly sealable lid**: no unwanted escaping of larvae, net-covered holes for aeration
- **Drainage system**: hole at the bottom collects excess liquids in a detachable jar (can be used as fertilizer for plants = comparable to worm tea)

Figure 7: Inner bucket with ramp for larval self-harvesting.
Workshops

For schools
• Five classes (ages 13-18 years)
• Schools with different backgrounds and curricula
• >100 pupils

For public
• Four public workshops
• Multiple 1-on-1 trainings
• 28 three-week experiments by Citizen Scientists
• 3 control experiments under stable environmental conditions
• 3 control experiments under „household“ conditions
School workshops

Black Soldier Fly School Workshops as Means to Promote Circular Economy and Environmental Awareness

by Andreas Walter 1,†, Thomas Klammer 1,†, Magdalena Gassner 3, Carina Desirée Heussler 2, Suzanne Kapelari 3, Markus Scherner 4, and Heribert Insam 2

1 Department of Biotechnology & Food Engineering, MCI—The Entrepreneurial School, Maximilianstraße 2, 6020 Innsbruck, Austria
2 Department of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
3 Department of Subject-Specific Education, University of Innsbruck, Innrain 52d, 6020 Innsbruck, Austria
4 Department of Sociology, University of Innsbruck, Universitätstraße 15, 6020 Innsbruck, Austria
∗ Authors to whom correspondence should be addressed.
† These authors contributed equally to this work.

Sustainability 2020, 12(22), 9574; https://doi.org/10.3390/su12229574

Received: 19 October 2020 / Revised: 13 November 2020 / Accepted: 14 November 2020 / Published: 17 November 2020
(This article belongs to the Collection Sustainable Citizenship and Education)

Figure 8: Booklets containing information on organic waste statistics, insect rearing and instructions for the experiments.
School workshops

• Specifically tailored programm

• Elaborated together with teachers

• Lectures were streamlined with school curricula

• Pre-Workshop lecture vs. Post-Workshop lecture

• Independent research carried out by pupils

• Change in mindset observable between workshops
School workshops

Results

- All students stuck to the sampling scheme
- Good larval growth across all school experiments
- Mostly fruit wastes were used as feed

Figure 11: Overview on the different types and amounts of organic wastes used within the school experiments.

Figure 12: Larval biomass gain separated by school classes. The grey background represents the average biomass gain across all experiments (± standard error).
Public workshops

• Broad range of ages: 23 years to 72 years
• All backgrounds
• 64% female vs. 36% male participants
• Average duration of experiments: 23 ± 1.5 days
• Garden, balcony, kitchen, living room, basement
Public workshops

- Average survival: 93%
- Biomass gain:
 - Minimum: 515%
 - Maximum: 1962%
- Waste reduction index:
 - Minimum: 0.69
 - Maximum: 3.75

\[WRI = \frac{D}{t} \times 100 \]
\[D = \frac{W - R}{R} \]

\(W \)…total amount of organic material (feed amount)
\(t \)…duration of the experiment
\(R \)…residue after time \(t \)

High \(WRI \) = good reduction efficiency

Figure 13: Overview on the larval rearing success.
Public workshops

- High diversity in organic waste composition
 - 89 different products
- Large spread of total feed amounts
 - 197 – 854 g
Web application

Figure X: COHMILA web application for the exploration of Citizen Scientist experimental results.
Conclusion

• Citizen science is a helpful tool when applied accordingly
 • Scientific supervision & standardized data acquisition

• Industrially exploited insects in classrooms:
 • Provide hands-on experience
 • Low maintenance – high value
 • Easy to implement in school curricula

• Success for small-scale rearing system
 • Black soldier fly resilient and undemanding model organism
 • High survival, high efficiency, fast development stimulates interest
Contact

From waste to feed
Mail: fromwastetofeed@outlook.com
Web: www.fromwastetofeed.com
Instagram: @fromwastetofeed
Twitter: @fromwastetofeed

Thomas Klammsteiner
Department of Microbiology
University of Innsbruck
Mail: thomas.klammsteiner@uibk.ac.at
Phone: +43 512 507 51322

Website
Linktree