Advances in Anaerobic Biotechnology: A Core Technology for the Production of Carbon-Neutral, Sustainable and Renewable Biofuels and Bioenergy from Waste

Spyros G. Pavlostathis, PhD

School of Civil & Environmental Engineering Georgia Institute of Technology Atlanta, GA 30332-0512, USA

spyros.pavlostathis@ce.gatech.edu

8th International Conference on Sustainable Solid Waste Management 23 – 26 June 2021

Thessaloniki, Greece

Anaerobic Digestion & Biotechnological Extensions

Biogas

 $(CH_4, CO_2, trace gases)$

- Volatile fatty acids production & C-chain elongation
- Hydrogen (H₂) production "Dark fermentation"
- Struvite production (MgNP)
- Biochar production
- Bioelectrochemically-assisted anaerobic digestion
- Hydrogen (H₂) production Microbial electrolysis cell (MEC)
- Biogas upgrade using MEC ($CH_4 \ge 98\%$)
- Anaerobic membrane bioreactor

Liquid digestate, Biosolids

Bioelectrochemical Systems (BES)

- A Resistor (MFC) or applied potential (MEC)
- B Proton exchange membrane
- R1 Anode reactant (oxidation half reaction)
- P1 Anode product
- R2 Cathode reactant (reduction half reaction)
- P2 Cathode product

Microbial Fuel Cell (MFC) Produces electrical current

Microbial Electrolysis Cell (MEC) Produces hydrogen (H₂)

Microbial Electromethanogenesis *Produces methane* (CH₄)

Microbial Electrosynthesis (MES) Produces 2+ carbon compounds (e.g., acetate, methanol, etc.)

At 25 °C, 1 atm, pH 7.

Case I: Biomass-derived Biofuels

Overall Objective

H₂ production through the biotransformation of specific furanic and phenolic compounds using MEC technology

H₂ Production – Microbial Electrolysis Cell (MEC)

- <u>Acetate</u>: directly-utilized substrate
- <u>Fermentable, complex organic</u> <u>compounds</u>: fermentation required prior to exoelectrogenesis

Selected Furanic and Phenolic Compounds

- Widely found in hydrolysates and pyrolysates
- Inhibitory to ethanol- and H₂-producing microorganisms in dark fermentation
- Direct conversion to hydrogen in dark fermentation has very low yield

Current and H₂ Production (MEC)

- \checkmark The two furanic compounds and SA were productive substrates for H₂ generation
- \checkmark VA and HBA biotransformation resulted in low current and H₂

Zeng, Collins, Borole, Pavlostathis, Water Research, 2017

ÓН

Biotransformation Pathways

Zeng, Collins, Borole, Pavlostathis, Water Research, 2017

Bioanode Conversion -- MEC vs. Fermentation

Furanic and Phenolic Mixture		Sodium Acetate	MEC/Fermentation Studies
sCOD removal (%) Extent of biodegradation	49 - 61	76 - 87	≈ MEC-Domestic WW
Coulombic efficiency (%) (e ⁻ of cumulative current)/(e ⁻ of COD removed)	44 - 69	84 - 95	
H ₂ yield (%) (e ⁻ of H ₂)/(e ⁻ of COD removed)	26 - 42	55 - 58	> Dark Fermentation (~ 17%)
Cathode efficiency (%) (e^{-} of H_{2})/(e^{-} of cumulative current)	65 - 85	66 - 88	NA
Max H ₂ production rate (L/L-d)	0.09 - 0.13	0.08 - 0.14	< Dark Fermentation < MEC-Domestic WW

Bio-Electro-Refinery

Bio-Electro-Refinery: production of switchgrass bio-oil, chemical manipulation followed by phase separation, and chemical production in a BES using the acid-rich aqueous phase (NBOOP: neutralized bio-oil organic phase; NBOAP: neutralized bio-oil aqueous phase)

Case II: MEC Biocathode Conversion of Carbon Dioxide (CO₂) to Methane (CH₄)

Overall Objective

Develop and test a bioelectrochemical system (BES) designed to convert CO₂ to CH₄ for the purpose of increasing the energy content of anaerobic digester biogas (i.e., biogas upgrade)

Biocathode Performance – Effect of Inoculum

Biocathode methanogenic inocula: MM, mixed; EHM, pre-enriched hydrogenotrophic

EHM-inoculated

Georgia

Dykstra and Pavlostathis, Environ. Sci. Technol., 2017

 0.64 ± 0.19

 0.59 ± 0.03

Biocathode Performance – Effect of H₂S

Cathode Headspace H₂S (0-6% v/v)

INITIAL 3-DAY CH ₄ PRODUCTION RATE (L/m ³ -d)	100 80 60 40 20	- - - - -							
	v	0	1	2	3	4	5	6	
INITIAL CATHODE HEADSPACE H ₂ S (%)									

Headspace H ₂ S (% v/v)	CE (%)	CCE (%)
0	11	100
0		100
4	19	99
5	58	13
6	58	15

CE, Coulombic efficiency CCE, cathode capture efficiency

Two competing effects:

- Depression of CH₄ production (H₂S ≥4%): Inhibition of methanogens?
- Enhancement of CH₄ production (H₂S ≤3%): What is/are the process(es) involved?

Biocathode Performance – Effect of H₂S

The methanogenic biocathode is protected from sulfide inhibition by **biofilm** formation and a local higher pH at the cathode electrode surface.

Biocathode Performance – Effect of H₂S

Georgia

BES Performance – Cathode Potential

APPLIED POTENTIAL (V vs. SHE)

Cathode Potential	CH₄ Productio	Final Biocathode Biogas (%)		
(V vs. SHE)	n Rate (mmol/d)	CH₄	CO ₂	
-0.80	1.22	96	4	
-0.75	0.98	95	5	
-0.70	0.87	94	6	
-0.65	0.97	94	6	
-0.60	0.74	92	8	
-0.55	0.86	92	8	
-0.50	0.53	90	10	

Georgia

Dykstra and Pavlostathis, Water Research, 2021

- At a more positive applied cathode potential, the cell potential (driving force for electron transport) decreased and the anode potential decreased.
- At lower anode potentials, the transfer of electrons from a substrate to the anode is less energetically favorable.
- However, anode acetate removal did not reflect the biocathode CH₄ production rate, likely due to microbial acetate uptake and storage.

16

Biogas Utilization – CO₂ Recycle/Zero-net Carbon Products

Acknowledgements

❑ The MEC H₂ production study was supported by the U.S. Department of Energy, BioEnergy Technologies Office, under Contract No. DE-AC05-000R22725.

<u>Contributors</u>: Dr. Xiaofei Zeng (Georgia Tech PhD student), Microsoft Corporation, Redmond, WA, USA

Dr. Abhijeet P. Borole, Oak Ridge National Laboratory, Oak Ridge, TN, USA

 The BES CO₂ conversion to CH₄ study was in part supported by the U.S. National Science Foundation Graduate Research Fellowship awarded to Christy M. Dykstra under Grant No. DGE-1148903.
<u>Contributors</u>: Dr. Christy M. Dykstra (Georgia Tech PhD student), San Diego State University, San Diego, CA, USA

Dr. Cheng Cheng (Georgia Tech visiting Ph.D. student), supported by the China Scholarship Council, Shandong University, Jinan, P.R. China

For further information contact: S. G. Pavlostathis

E-mail: spyros.pavlostathis@ce.gatech.edu CEE Website: http://www.ce.gatech.edu/people/faculty/961/overview

