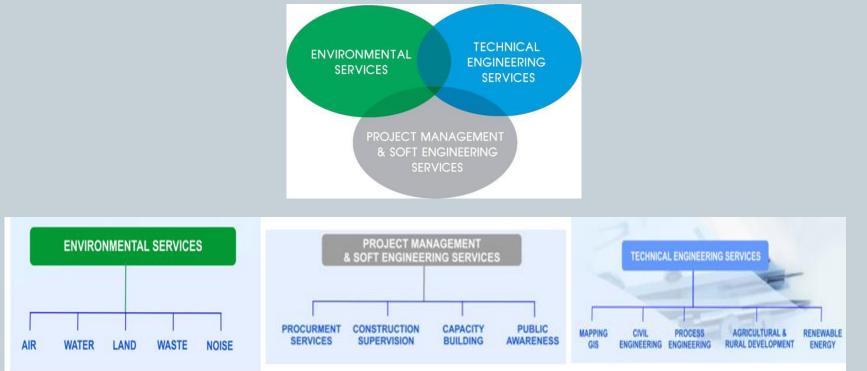


Evaluation of Carbon Footprint in Wastewater Treatment Plants

T. Lolos, C. Tsompanidis, <u>E. Ieremiadi</u>, G. Tavoularis ENVIROPLAN SA, Consultants and Engineers 23th June 2021 – Virtual Conference


ENVIROPLAN Consultants and Engineers S.A. private consulting firm, founded in Athens in 1990

ENVIROPLAN S.A. is certified according to **DIN EN ISO 9001:2015**, **EN ISO 14001:2015** and **OHSAS 18001:2007** and holds also a permanent professional Indemnity Insurance Contract with Lloyd's

ENVIROPLAN S.A. offers a broad range of services from the initial concept through to the commissioning of a project, specialized in multi-disciplinary solutions

ENVIROPLAN S.A. has over 30 years of experience and expertise in **Waste Management projects**, providing consultancy and technical engineering services

• ENVIROPLAN S.A. is involved in many international environmental projects in:

- ✓ Republic of Cyprus
- ✓ *Republic of Turkey*
- ✓ Republic of Romania
- ✓ Republic of Croatia
- ✓ Republic of Serbia
- ✓ Republic of Bulgaria
- ✓ Republic of North Macedonia
- ✓ Republic of Georgia

- ✓ Republic of Azerbaijan
- ✓ Republic of Armenia
- ✓ Republic of Ukraine
- ✓ Kyrgyz Republic
- ✓ Kingdom of Jordan
- ✓ Republic of Lebanon
- ✓ Republic of Lithuania
- ✓ State of Palestine

• **ENVIROPLAN S.A.** has as clients many international organizations as well as governmental bodies such as:

- ✓ World Bank (W.B.)
- ✓ European Investment Bank (E.I.B.)
- ✓ European Bank for Reconstruction and Development (EBRD)
- ✓ Joint Assistance to Support Projects in European Regions (JASPERS)
- ✓ Ministries
- ✓ Waste Management Organizations
- ✓ Local Authorities
- ✓ Private sector

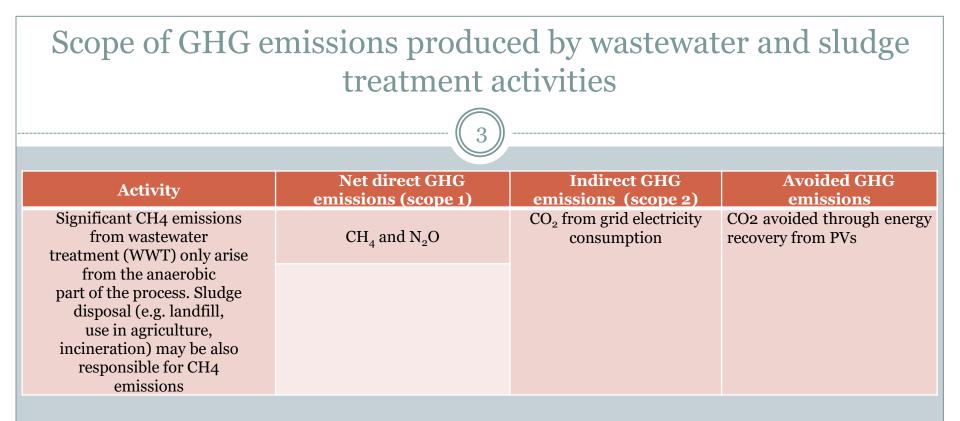
Climate Change Wastewater treatment plant

This presentation focus on climate change mitigation regarding the development of a Wastewater treatment plant.

Mitigation is dealing with the causes of climate change by reducing GHG emissions.

Methodology for the quantification of GHG emissions for different configuriations of Wastewater treatment plant will be presented followed by results from a case study related with the development of a Wastewater treatment plant in Saida-Lebanon in the Framework agreement to support EIB advisory services (EIBAS) activities inside and outside EU-28 – LOT 1: Environment.

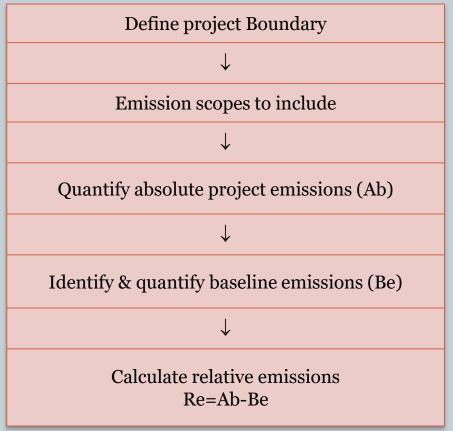
Climate Change Mitigation GHG emissions calculations Methodology

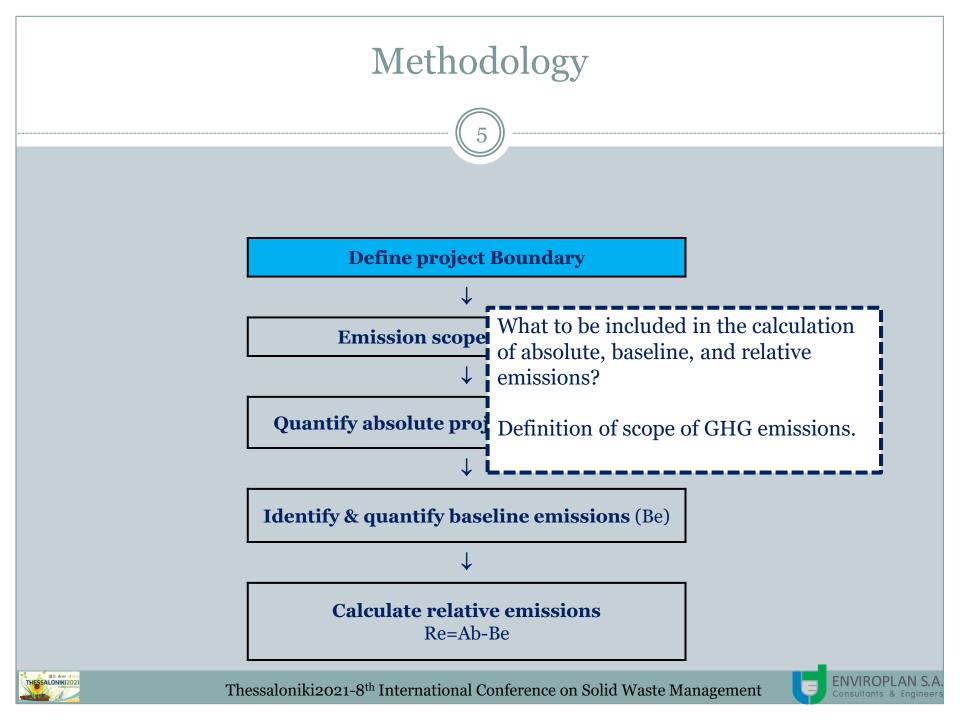

As part of the option analysis, the quantification of each examined alternative option regarding WWTP treatment scheme was performed according to The Carbon Footprint Methodology, that provides a series of emissions factors derived from internationally recognized sources, e.g. GHG Protocol and IPCC Guidelines for National GHG Inventories.

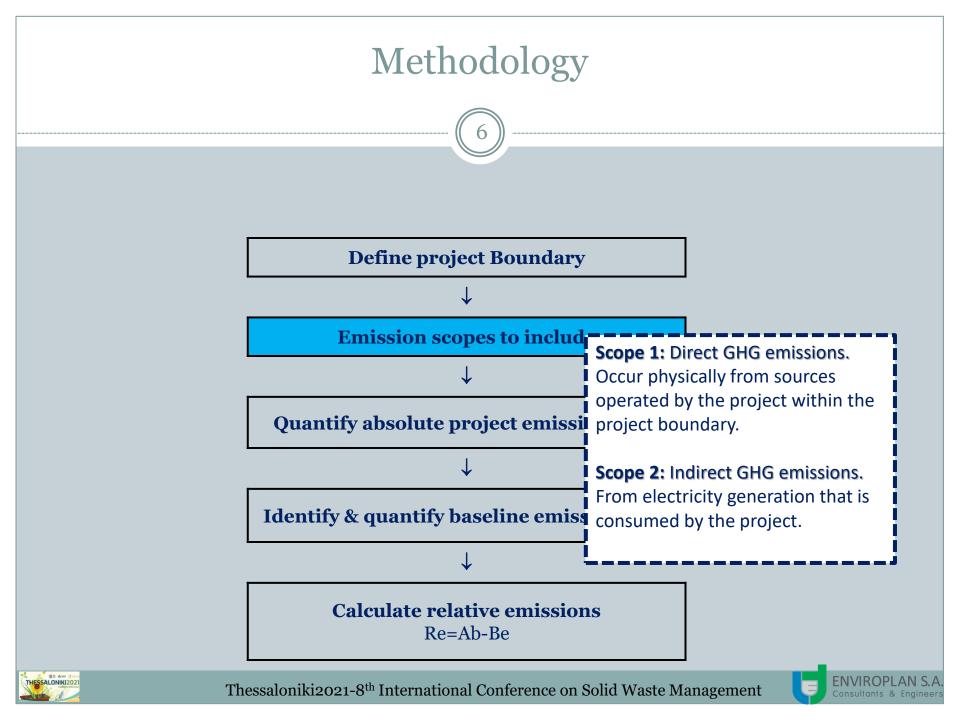
The calculation of the GHG emissions included:

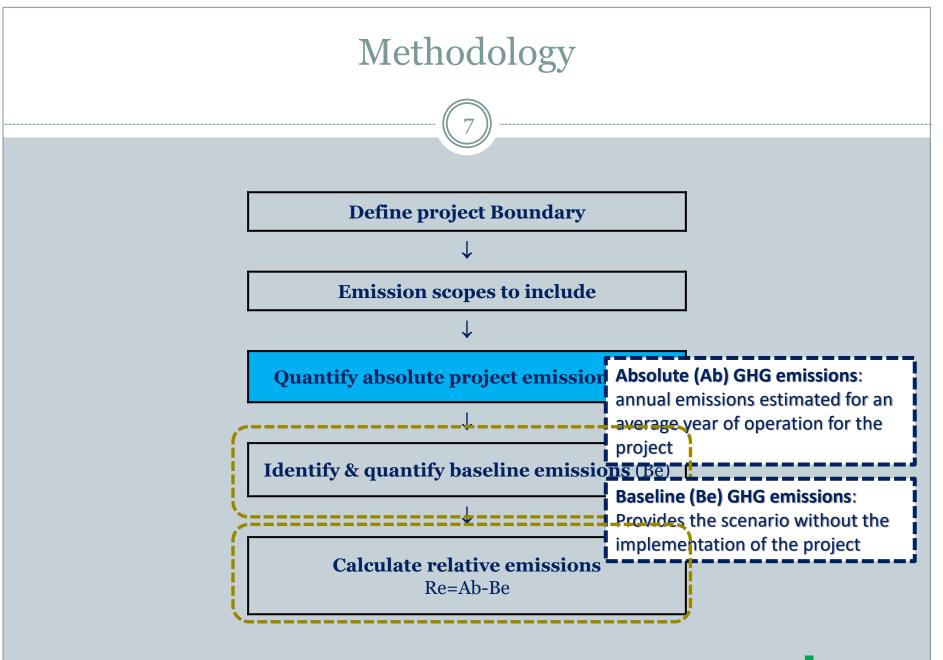
- Both direct and indirect GHG emissions from the different configurations of the WWTP
- > GHG emissions, Avoided GHG emissions and Net GHG emissions of an incremental approach (with-without project option)

- CH₄ from degradation of organic material in the wastewater under anaerobic conditions
- N_2O as an intermediate product from the degradation of nitrogen components in the wastewater
- CO2 from the consumption of electricity in the treatment process




Methodology


According *European Investment Bank (EIB) carbon footprint methodologies, Methodologies for the Assessment of Project GHG Emissions and Emission Variations,* in order to estimate the relative GHG emissions the following steps must be followed:



Basic Assumptions

For the total GHG emissions calculation, the following specific calculations have been implemented:

- CH4 emissions from domestic wastewater:
 - > Calculation of total CH4 emissions from domestic wastewater (TOW)
 - Estimation of the emission factor for each domestic wastewater treatment/discharge pathway or system
 - > Estimate emissions, adjust for possible sludge removal and/or CH4 recovery
- N2O emissions from domestic wastewater:
 - > Estimation of N2O emissions from wastewater effluent
- CO2 emissions from electricity consumption
- Savings from PVs

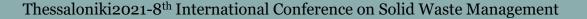
Analytical equations are provided in Chapter 6: Wastewater treatment and discharge of 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Framework agreement to support EIB advisory services (EIBAS) :

"Feasibility Study for Upgrade and Expansion for Saida Wastewater Collection and Treatment Systems"

Project Background

The four different configurations which were evaluated regarding WWTP technology were the following:


- Option 1: Conventional Activates Sludge treatment (CAS) including nitrogen removal, with primary sedimentation and Anaerobic Sludge digestion.
- Option 2: Biological Aerated Filter (BAF), including nitrogen removal, with primary sedimentation and Anaerobic Sludge digestion
- Option 3: Conventional Activates Sludge treatment (CAS) with no nitrogen removal, with primary sedimentation and Anaerobic Sludge digestion.
- Option 4: Biological Aerated Filter (BAF), with no nitrogen removal, with primary sedimentation and Anaerobic Sludge digestion

The WWTP alternative options refer mainly to *secondary treatment*, with preliminary treatment, primary sedimentation, disinfection and sludge treatment to be almost identical for all the options.

Each WWTP alternative option includes:

- Inlet works inlet pumping station
- Screening unit
- Grit and grease removal unit
- Primary sedimentation primary sludge pumping station
- Biological treatment
- Disinfection unit
- Sludge treatment

Absolute Emissions-Year 2035

				I
OPTION 1 Description of source	Activity data	Units/year	Emission Factor t CO2-eq/unit	Emissions t CO2-eq/yr
Wastewater treatment CH4 (WWTP)	-2,224	t CH4/y	21	-46,710
Wastewater treatment N2O (WWTP)	6.84	t NO2/y	310	2,119
Sludge disposal	93.39	t CH4/y	21	1,961
Electricity Consumption	18,797,206	kWh/y	0.000792	14,887
Savings from PVs	-228,214	kWh/y	0.000792	-181
			Absolute emissions	-27,923

OPTION 2			Emission Factor	Emissions
Description of source	Activity data	Units/year	t CO2-eq/unit	t CO2-eq/yr
Wastewater treatment CH4 (WWTP)	-2,353	t CH4/y	21	-49,417
Wastewater treatment N2O (WWTP)	6.84	t NO2/y	310	2,119
Sludge disposal	98.58	t CH4/y	21	2,070
Electricity Consumption	34,381,741	kWh/y	0.000792	27,230
Savings from PVs	-228,214	kWh/y	0.000792	-181
			Absolute emissions	-18,178

OPTION 3			Emission Factor	Emissions
Description of source	Activity data	Units/year	t CO2-eq/unit	t CO2-eq/yr
Wastewater treatment CH4 (WWTP)	-2,326	t CH4/y	21	-48,853
Wastewater treatment N2O (WWTP)	14.18	t NO2/y	310	4,395
Sludge disposal	97.50	t CH4/y	21	2,047
Electricity Consumption	15,161,995	kWh/y	0.000792	12,008
Savings from PVs	-228,214	kWh/y	0.000792	-181
			Absolute emissions	-30,583

OPTION 4			Emission Factor	Emissions
Description of source	Activity data	Units/year	t CO2-eq/unit	t CO2-eq/yr
Wastewater treatment CH4 (WWTP)	-2,353	t CH4/y	21	-49,417
Wastewater treatment N2O (WWTP)	14.18	t NO2/y	310	4,395
Sludge disposal	98.58	t CH4/y	21	2,070
Electricity Consumption	20,117,002	kWh/y	0.000792	15,933
Savings from PVs	-228,214	kWh/y	0.000792	-181
			Absolute emissions	-27,200

Year 2035

Absolute Emissions-Year 2050

-

Year 2050			10))
				//
OPTION 1 Description of source	Activity data	Units/year	Emission Factor t CO2-eq/unit	Emissions t CO2-eq/yr
Wastewater treatment CH4 (WWTP)	-2,582	t CH4/y	21	-54,229
Wastewater treatment N2O (WWTP)	7.94	t NO2/y	310	2,461
Sludge disposal	108.42	t CH4/y	21	2,277
Electricity Consumption	18,797,206	kWh/y	0.000792	14,887
Savings from PVs	-196,278	kWh/y	0.000792	-155
			Absolute emissions	-34,760

OPTION 2			Emission Factor	Emissions
Description of source	Activity data	Units/year	t CO2-eq/unit	t CO2-eq/yr
Wastewater treatment CH4 (WWTP)	-2,732	t CH4/y	21	-57,372
Wastewater treatment N2O (WWTP)	7.94	t NO2/y	310	2,461
Sludge disposal	114.44	t CH4/y	21	2,403
Electricity Consumption	34,381,741	kWh/y	0.000792	27,230
Savings from PVs	-196,278		0.000792	-155
			Absolute emissions	-25,433

OPTION 3			Emission Factor	Emissions
Description of source	Activity data	Units/year	t CO2-eq/unit	t CO2-eq/yr
Wastewater treatment CH4 (WWTP)	-2,701	t CH4/y	21	-56,717
Wastewater treatment N2O (WWTP)	16.46	t NO2/y	310	5,103
Sludge disposal	113.19	t CH4/y	21	2,377
Electricity Consumption	15,161,995	kWh/y	0.000792	12,008
Savings from PVs	-196,278	kWh/y	0.000792	-155
			Absolute emissions	-37,384

OPTION 4			Emission Factor	Emissions		
Description of source	Activity data	Units/year	t CO2-eq/unit	t CO2-eq/yr		
Wastewater treatment CH4 (WWTP)	-2,732	t CH4/y	21	-57,372		
Wastewater treatment N2O (WWTP)	16.46	t NO2/y	310	5,103		
Sludge disposal	114.44	t CH4/y	21	2,403		
Electricity Consumption	20,117,002	kWh/y	0.000792	15,933		
Savings from PVs	-196,278	kWh/y	0.000792	-155		
₩ 55 ALONIKI2021		1	Absolute emissions	-34,089		
Thessaloniki2021-8 th International Conference on Solid Waste Management						

ENVIROPLAN S.A Consultants & Engineers

Baseline Emissions-Years 2035 & 2050

Year 2035 Baseline

			Emission Factor	Emissions
Description of source	Activity data	Units/year	t CO2-eq/unit	t CO2-eq/yr
Wastewater treatment CH4 (WWTP)	278	t CH4/y	21	5,828
Wastewater treatment N2O (WWTP)	16.68	t NO2/y	310	5,171
Sludge disposal	0.00	t CH4/y	21	0
Electricity Consumption	1,879,721	kWh/y	0.000792	1,489
			Absolute emissions	12,487

Year 2050 Baseline

			Emission Factor	Emissions
Description of source	Activity data	Units/year	t CO2-eq/unit	t CO2-eq/yr
Wastewater treatment CH4 (WWTP)	322	t CH4/y	21	6,766
Wastewater treatment N2O (WWTP)	19.37	t NO2/y	310	6,003
Sludge disposal	0.00	t CH4/y	21	0
Electricity Consumption	1,879,721	kWh/y	0.000792	1,489
			Absolute emissions	14,258

Relative Emissions-Years 2035 & 2050

Year 2035 Relative emissions

	Emissions
	t CO2-eq/yr
Option 1	-40,410
Option 2	-30,666
Option 3	-43,070
Option 4	-39,687

Year 2050 Relative emissions

	Emissions
	t CO2-eq/yr
Option 1	-49,017
Option 2	-39,691
Option 3	-51,642
Option 4	-48,346

- Option 1: Conventional Activates Sludge treatment (CAS) including nitrogen removal, with primary sedimentation and Anaerobic Sludge digestion.
- Option 2: Biological Aerated Filter (BAF), including nitrogen removal, with primary sedimentation and Anaerobic Sludge digestion
- Option 3: Conventional Activates Sludge treatment (CAS) with no nitrogen removal, with primary sedimentation and Anaerobic Sludge digestion.
- Option 4: Biological Aerated Filter (BAF), with no nitrogen removal, with primary sedimentation and Anaerobic Sludge digestion

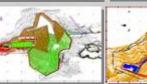
Reduction of GHG emissions Project contribution

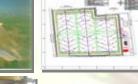
15

With Project Scenario Option 3	2024	2035	2050
Net GHG emissions, t CO2-eq	24.190	20 502	27 204
Net and emissions, t cogreq	-24,180	-30,583	-37,384
10 laborations Comparing	2024	2025	2050
Without Project Scenario Baseline	2024	2035	2050
Net GHG emissions, t CO2-eq	10,826	12,487	14,258
			6

% reduction of GHG emissions	2024	2035	2050
	323%	345%	362%

The percentage of reduction of GHG emissions in years 2024, 2035 and 2050 through the appliance of Option 3 will contribute positively in the climate change mitigation and adaptation as it will reduce the GHG emissions (in t CO2-eq).





Thank you for your attention

Eleni Ieremiadi e.ieremiadi@enviroplan.gr info@enviroplan.gr www.enviroplan.gr Tel. +30 210 610 51 27

