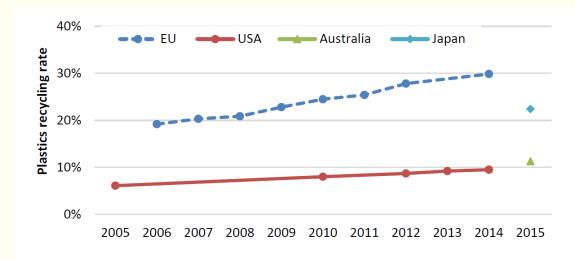
8th International Conference on Sustainable Solid Waste Management

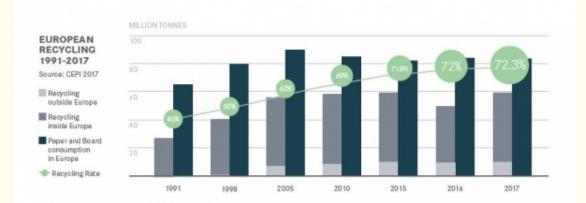
23 June 2021

The Significance of Chemical Use and Transfer to Recycling and Recovery Systems

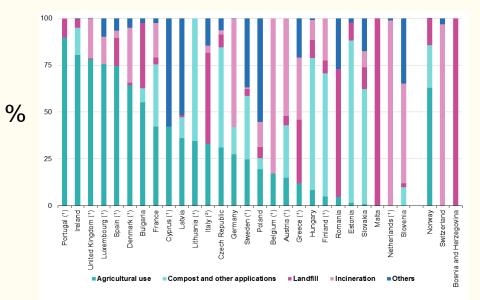
Professor Stephen Smith, Department of Civil & Environmental Engineering Email <u>s.r.smith@imperial.ac.uk;</u> Tel +44 (0) 75946051


UN Sustainable Development Goal 12:

Ensure sustainable consumption and production patterns


Plastics Recycling

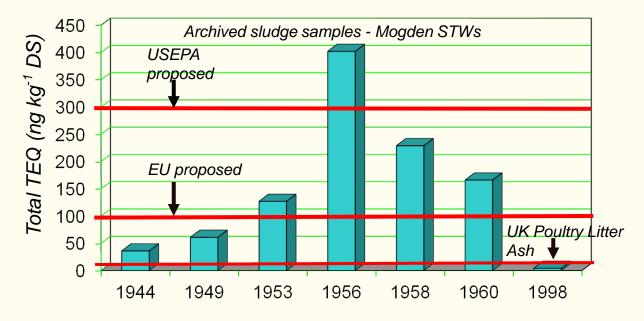
Paper Recycling


Growth in UK Composting Industry

Input

Sewage Sludge Management

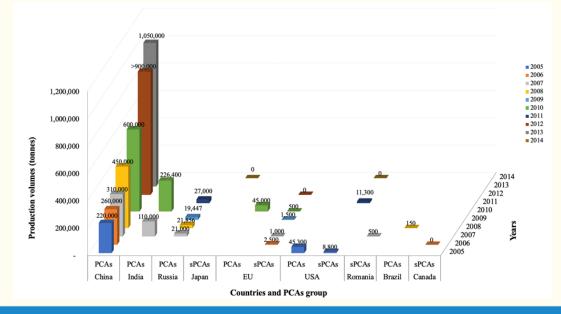
Note: Croatia: not available. (*) 2012 data. (*) 2010 data Source: Eurostat (online data code: env_ww_spd)



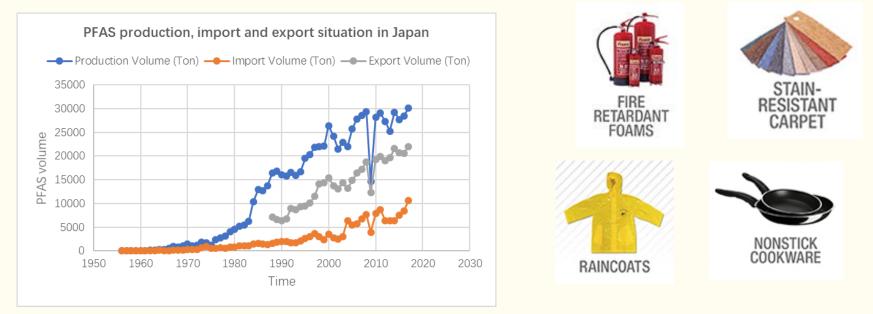
- Over 178 million unique chemicals in CAS database
- 106,213 unique substances are registered for industrial use on the EC Inventory of chemicals
- Environmental and health concerns:
 - Toxic, mutagenic, carcinogenic, endocrine disruption, developmental toxins, ecotoxic, antibiotic resistance

Imperial College Sewage Sludge Quality - Dioxin

Contemporary analysis: ~8 ng Dioxin TEQ kg⁻¹ DS

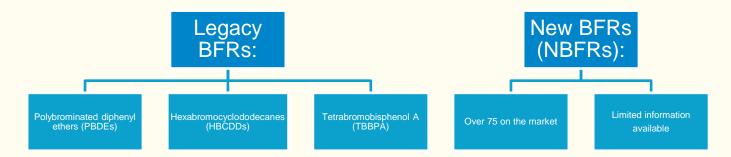

Year

Imperial College Organic Contaminants in Biosolids and CLO


	Biosolids	CLO	Reference
PCDD/Fs & non-ortho PCBs (ng TEQ kg ⁻¹ DS)	14.6-20.4	18.9-12.0	20 ^a
Ortho PCBs (SUM µg kg ⁻¹ DS)	29.4-73	25.4-29.6	220 ^b
PBDD/Fs & non-ortho PBBs (ng TEQ kg ⁻¹ DS)	40.3-77.9	18-32.2	20 ^a
Ortho PBBs (SUM µg kg ⁻¹ DS)	0.05-0.06	0.1-0.4	220 ^b
PXDD/Fs (ng TEQ kg ⁻¹ DS)	0.20-0.27	0.18-0.29	20ª
PXBs (ng TEQ kg ⁻¹ DS)	0.02	0.014-0.02	20 ^a
PAHs (PAH16 µg kg⁻¹ DS)	1125-2144	2481-3792	4000 ^c
PBDEs (SUM µg kg ⁻¹ DS) (including BDE 209)	4303-6781	1717-1761	1400 ^b
Deca-BDE 209 (µg kg⁻¹ DS)	4200-6690	1650-1720	1000 ^b
HBCDs (µg kg⁻¹ DS)	5.5-390	3-836	200 ^d
PBCD (µg kg⁻¹ DS)	7.0	13-351	0.20 ^e
TBBPA (µg kg⁻¹ DS)	33-45.2	100-517	280 ^b
PCNs (ng kg ⁻¹ DS)	541-743	680-1980	44000 ^b
PFOS (µg kg⁻¹ DS)	60.9-204	8.9-35.4	200 ^b
$PCAc$ (chort and modium chain) (uc $kc^{-1} Pc$)	6425-	1100-	050000b
PCAs (short and medium chain) (µg kg ⁻¹ DS)	140700	59500	959000 ^b

CLO=compost like output; ^aEquivalent to the maximum limit of 20 ng WHO-2005 TEQ kg⁻¹ DS for a batch of PLA destined for land application stipulated in the end-of-waste criteria for PLA (WRAP, 2012a); ^bMean concentration in sewage sludge (Smith, 2009a); ^cSwiss guide limit value for the USEPA 16 priority PAHs in compost (Saveyn and Eder, 2014); ^dMean concentration from a survey of Chinese sewage sludge (Xiang *et al.*, 2015); ^eMean concentration from a survey of Chinese sewage sludge (Zeng *et al.*, 2014)

With greater source control in Europe and US, production of hazardous chemicals moves to less well regulated regions, eg polychlorinated alkanes:

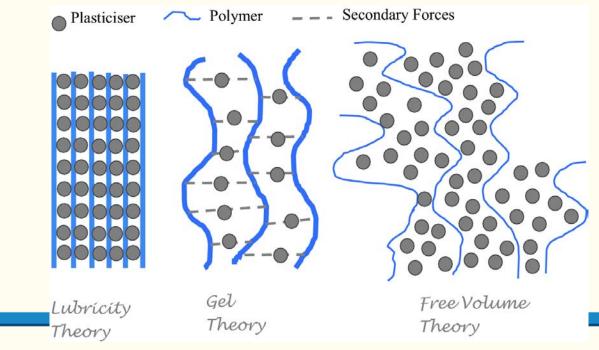

Per- and Polyfluoroalkyl Substances (PFAS)

> 4,700 PFAS exist, PFOS and PFOA are the main forms found in environmental media

Brominated Flame Retardants (BFRs)

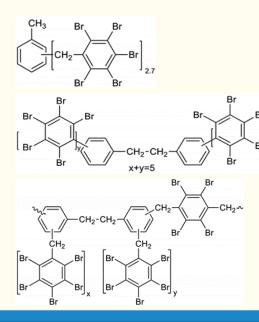
- Used to reduce the flammability of treated materials
- Act by interrupting the radical gas phase during combustion
- Most cost-effective way of passing flammability tests (Fire Safety Regulations)

Sources of BFRs and Recycling of Flame Retarded Material

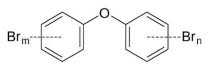

Furniture: solas, mattresses
Textiles
Carpets
Curtains
Wallpaper
Coatings
Polystyrene Insulation
Children's Products and Clothing: toys, changing pads, cribs, child seats
Food Contact Materials
Building Materials
Hard Plastics in Electronics
Car Interiors

PCBs in Recycled Paper Products

ng TEQ kg ⁻¹ DS	Non-ortho-PCBs		
Biosolids	0.7 – 1.7		
CLO	0.7 – 0.8		
MBMA	0.08 – 1.7		
PLA	0.06 – 1.0		
PSA	0.03		
Virgin wood	0.04		
RWW	0.05 - 0.4		
Cardboard	0.45		
Paper Sludge	1.4 – 1.9		


- Restrictions first introduced in EU by Council Directive 76/769/EEC of 27 July 1976
- Legacy use of Aroclor 1242 in carbonless copy paper
- Paper recyclable up to 7 times therefore remains in the system at low levels for very long time
- Spokane City in Washington State recently led and won a major national lawsuit in the US against Monsanto for \$550 million relating to water and environmental contamination with PCBs

Major contaminant types are not chemically combined with the matrix eg flame retardents and plasticisers


Imperial College London Emerging FRs and QSAR Analysis

New BFRs in development:

- As substances are banned manufacturers increase halogenation/aromaticity
- High log Kow
- Strong adsorption and transfer to sludge in WWT
- Negligible leaching
- High aquatic toxicity
- Potentially highly bioaccumulative
- Persistent

Polybrominated diphenyl ether (PBDE) structure:

PTEs in Solid Waste Fractions

- Lead (Pb)
- WEEE remains important source, particularly PCBs
- Lead still apparent in solder
- Various types of batteries
- Glass packaging (e.g. beverage bottles)
- Ceramics (e.g. colourful foodware)
- Paints and house dust
- Plastics

- Cadmium (Cd)
- Various types of plastics
- Contemporary consumer plastics
- Glass including enamels of bottles
- Ceramic materials
- NiCd batteries (largely legacy) but also in other batteries

EU legislation and directives restrict the use of PTEs (e.g., RoHS, 494/2011 consumer products, 94/62/EC packaging and 2006/66/EC batteries), but they are still present in significant concentrations in consumer goods

PTEs in Mechanically-sorted MSW Compost

- Historical (Smith, 2009) and contemporary data were benchmarked against PAS100
- Pb and Cd have source controls
- Increase in compliance for some metals (eg Pb, Zn, Cr), but not others (eg Cd)
- The extensive use of heavy metals in consumer products continues to challenge the composition of mechanically-sorted MSW composts

			Pb	Cd	Zn	Cu	Ni	Cr
	PAS100 DM) mg/kg	200	1.5	400	200	50	100
	Smith 2009	n	22	22	22	17	22	20
è		%>PAS 100	73	64	73	68	50	35
	Singh Gill 2021	n	26	24	27	26	26	22
		%>PAS 100	42	63	59	62	54	23
	n, number of studies							

How do toxic chemicals enter the EU economy?

- More than 90% of all chemicals in consumer products non-compliant with REACH come from outside of the EU (CEFIC, 2020)
- Legacy contamination within recycling systems
- Leach out of manufactured products and transfer to environmental media
- Emerging chemicals and production of persistent, bioaccumulative and potentially biologically active chemicals not yet subject to source control regulations

https://cefic.org/app/uploads/2020/09/Cefic-Input-Paper-Chemical-Strategy-for-Sustainability-CSS.pdf

Actions:

- Emphasis on source control *ALL* halogenated compounds are a priority
- Enforcement of monitoring and control systems on imported products
- Monitoring and source control of legacy chemicals in recycling systems
- Smarter chemicals that are not bioaccumulative or toxic and that are chemically bound to stay where they are intended
- Recycling systems critical to SDG12: Responsible Consumption & Production (Circular Economy) are vulnerable to multiple routes of chemical contamination and it is vital source control measures are implemented and effective
- An important topic that should receive greater attention at the ICSSWM