Integration of hydrothermal processes for fuels and hydrogen production from digestates

Marco Baratieri
Introduction

In Europe, Directives 2016/2284/EU and 91/676/EEC regulate the distribution of digestate on agricultural land, limiting the intake of N to 170 kg ha\(^{-1}\) year\(^{-1}\).

- Water pollution: nitrate and nutrients leach into the groundwater causing eutrophication and hypoxia
- Air pollution: ammonia volatilization
- Very high water-content and residual biological activity management issues
- Negative economic and environmental impacts
Introduction

Pre-treatment step to decrease the moisture content

- Landfilling
- Composting
- Incineration

- Long times
- Bad odor
- GHGs emissions
- Land availability

HTC
Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).
Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).
Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).
Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).
Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60%).
Materials and Methods

Digestate

- 2.5 kg per experiment
- Previously kept in refrigerator at 4 °C
- No pre-treatment

<table>
<thead>
<tr>
<th>Digestate</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash content [%wt]</td>
<td>26.83</td>
<td></td>
</tr>
<tr>
<td>C [%wt]</td>
<td>39.11</td>
<td></td>
</tr>
<tr>
<td>H [%wt]</td>
<td>4.87</td>
<td></td>
</tr>
<tr>
<td>O [%wt]</td>
<td>26.56</td>
<td></td>
</tr>
<tr>
<td>N [%wt]</td>
<td>1.94</td>
<td></td>
</tr>
<tr>
<td>S [%wt]</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>HHV [MJ/kg]</td>
<td>14.31</td>
<td></td>
</tr>
<tr>
<td>LHV [MJ/kg]</td>
<td>13.24</td>
<td></td>
</tr>
</tbody>
</table>
Materials and Methods

Batch reactor – 4 L

Hydrochar – oven-dried at 105 °C for 24 h

Aqueous HTC Liquid

Scheme of the experimental lay-out

1. Electric furnace
2. HTC reactor
3. Temperature controller
4. HTC controller
5. Pressure transducer
6. Cold trap
7. Safety valve
8. Manometer

Operating condition

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Experimental range</th>
</tr>
</thead>
<tbody>
<tr>
<td>digestate</td>
<td>180 220 250</td>
</tr>
<tr>
<td>Temperature [°C]</td>
<td>endogenous</td>
</tr>
<tr>
<td>Pressure</td>
<td>3</td>
</tr>
<tr>
<td>Residence time [h]</td>
<td>3</td>
</tr>
<tr>
<td>Repetitions</td>
<td>3</td>
</tr>
</tbody>
</table>
Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).
HC characterization results

<table>
<thead>
<tr>
<th></th>
<th>Digestate</th>
<th>HC180</th>
<th>HC220</th>
<th>HC250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile matter</td>
<td>%wt$_{\text{dry}}$</td>
<td>55 ± 1</td>
<td>55 ± 1</td>
<td>53 ± 1</td>
</tr>
<tr>
<td>Fixed carbon</td>
<td>%wt$_{\text{dry}}$</td>
<td>18 ± 1</td>
<td>17.9 ± 0.3</td>
<td>18.5 ± 0.4</td>
</tr>
<tr>
<td>Ash</td>
<td>%wt$_{\text{dry}}$</td>
<td>26.6 ± 0.5</td>
<td>27.2 ± 0.8</td>
<td>28.8 ± 0.8</td>
</tr>
<tr>
<td>Fuel ratio</td>
<td>-</td>
<td>0.33</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>C</td>
<td>%wt$_{\text{dry}}$</td>
<td>39.1 ± 0.5</td>
<td>40.1 ± 1.6</td>
<td>42.5 ± 0.8</td>
</tr>
<tr>
<td>H</td>
<td>%wt$_{\text{dry}}$</td>
<td>4.87 ± 0.05</td>
<td>5.01 ± 0.11</td>
<td>4.92 ± 0.15</td>
</tr>
<tr>
<td>N</td>
<td>%wt$_{\text{dry}}$</td>
<td>1.94 ± 0.09</td>
<td>2.03 ± 0.06</td>
<td>2.16 ± 0.03</td>
</tr>
<tr>
<td>S</td>
<td>%wt$_{\text{dry}}$</td>
<td>0.68 ± 0.03</td>
<td>0.71 ± 0.05</td>
<td>0.62 ± 0.01</td>
</tr>
<tr>
<td>O%*</td>
<td>%wt$_{\text{dry}}$</td>
<td>26.56</td>
<td>24.09</td>
<td>19.71</td>
</tr>
<tr>
<td>HHV</td>
<td>MJ/kg</td>
<td>14.3 ± 0.5</td>
<td>15.9 ± 0.1</td>
<td>16.9 ± 0.2</td>
</tr>
</tbody>
</table>

Benedetti et al., Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution, Bioresource Technology 353 (2022) 127142
HC characterization results

Van Krevelen Diagram

decarboxylation and dehydration reactions occur during the HTC process
HC characterization

Thermogravimetric analysis

- T: 40 - 900 °C
- Ramp rate (β): 5, 10, 20, 40 °C min⁻¹
- Purge gas: air, 20 mL min⁻¹
- Protective gas: N₂, 20 mL min⁻¹
- Replicates: 3

Combustion kinetics

Kissenger-Akahira-Sunose (KAS) method

\[
\ln \left(\frac{\beta}{T_{\alpha}^2} \right) = \ln \left(\frac{A E_\alpha}{R g(\alpha)} \right) - \frac{E_\alpha}{R T_{\alpha}}
\]

\[
\alpha = \frac{m_i - m_t}{m_i - m_f}
\]

Benedetti et al., Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution, Bioresource Technology 353 (2022) 127142
TG – DTG curves

Four main peaks:

1. 290°C - Devolatilization
2. 370°C - Combustion
3. 450°C - Char combustion
4. 630°C - Secondary degradation reactions

Residual mass higher for HC obtained at higher T

Benedetti et al., Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution, Bioresource Technology 353 (2022) 127142
Isoconversional curves – KAS method

Results

<table>
<thead>
<tr>
<th>R²</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC 180°C</td>
<td>0.9979</td>
<td>0.9990</td>
<td>0.9960</td>
<td>0.9877</td>
<td>0.9533</td>
<td>0.8989</td>
<td>0.8262</td>
<td>0.7985</td>
<td>0.5708</td>
</tr>
<tr>
<td>HC 220°C</td>
<td>0.9989</td>
<td>0.9985</td>
<td>0.9991</td>
<td>0.9874</td>
<td>0.9723</td>
<td>0.9439</td>
<td>0.9149</td>
<td>0.8620</td>
<td>0.7564</td>
</tr>
<tr>
<td>HC 250°C</td>
<td>0.9577</td>
<td>0.9968</td>
<td>0.9874</td>
<td>0.9684</td>
<td>0.9379</td>
<td>0.9052</td>
<td>0.8709</td>
<td>0.8196</td>
<td>0.7453</td>
</tr>
</tbody>
</table>

Benedetti et al., Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution, Bioresource Technology 353 (2022) 127142
Activation energy

<table>
<thead>
<tr>
<th>Sample</th>
<th>E_a average [kJ mol$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC 180°C</td>
<td>100</td>
</tr>
<tr>
<td>HC 220°C</td>
<td>88</td>
</tr>
<tr>
<td>HC 250°C</td>
<td>67</td>
</tr>
</tbody>
</table>

Benedetti et al., Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution, Bioresource Technology 353 (2022) 127142
Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).
AHL characterization

Characterization

AHL

Valorization
AHL characterization

TOC analysis

Semi-continuous analysis
Spillages every 30 min during operation

HPLC analysis
- Glucose
- Lactic, Formic, Acetic, Fumaric Acid
- Hydroxymethylfurfural (HMF), Furfural

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>TOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHL 180 °C</td>
<td>[g/L] 7.07</td>
</tr>
<tr>
<td>AHL 220 °C</td>
<td>[g/L] 7.43</td>
</tr>
<tr>
<td>AHL 250 °C</td>
<td>[g/L] 7.89</td>
</tr>
</tbody>
</table>
• Increased rate of hydrolysis, decarboxylation and dehydration that become the governing reactions of the process.
• Sugars, HMF and furfurals are less stable at high temperature and residence time.
• Polymerization and formation of secondary char.
AHL valorization

AIM
- Obtain valuable gaseous product rich in H_2
- Minimize the waste, gasifying organic matter
Supercritical water gasification: SCWG

Hydrothermal process

• Alternative to conventional gasification and anaerobic digestion
• No need for pre-drying
• High temperature and pressure, low residence time
• Water in supercritical conditions becomes a very aggressive medium (and reactant)

Source: Yakaboylu et al., Supercritical water gasification of biomass

Drop in density
Decrease of dielectric constant
Decrease in viscosity
Materials and methods

Feedstock	Temperature	Pressure	Residence time	Flow rate
AHL 180 °C	500	550	25	8.0
	600	25	30	7.0
		550	7.0	6.3
AHL 220 °C	500	550	25	8.0
	600	25	30	7.0
		550	6.3	6.3
AHL 250 °C	500	550	25	8.0
	600	25	30	7.0
		550	6.3	6.3

1. Water
2. Pump
3. Feeding system
4. Pre-heater
5. Temperature controller
6. Furnace
7. Heat exchanger
8. Cooling system
9. Filter
10. Ball valve
11. Back pressure regulator
12. Sampling port

SCWG

- CHAR
- TAR
- LIQUID
- GAS
Effect of Temperature

Gas composition

- No differences among AHLs
- Gas generation rate increases with T
- H_2 % increases with T
 (other main gases: CO_2, CH_4)

Taufeer et al., Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products, Renewable Energy 173 (2021) 934-941
Effect of Temperature

Carbon balance

- SCWG 500: most of the carbon is in the liquid phase
- SCWG 600: most of the carbon is in the gas phase
- Amount of organic matter gasified increases with temperature

Tauf er et al., Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products, Renewable Energy 173 (2021) 934-941
Effect of Residence Time

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Residence time</th>
<th>Flow rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHL 220 °C</td>
<td>600 MPa</td>
<td>25 s</td>
<td>15 s</td>
<td>12.5 mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 s</td>
<td>6.3 mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 s</td>
<td>3.1 mL/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90 s</td>
<td>2.1 mL/min</td>
</tr>
</tbody>
</table>

- Minor effect of residence time
- H_2 % max at 30 s
- C yield % in the gas phase max at 15 s

Tauler et al., Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products, Renewable Energy 173 (2021) 934-941
Effect of Feedstock Concentration

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Temperature</th>
<th>Pressure</th>
<th>Residence time</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHL 180 °C</td>
<td>600 [°C]</td>
<td>25 [MPa]</td>
<td>30 [s]</td>
<td>6.7 [%]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.6 [%]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.0 [%]</td>
</tr>
</tbody>
</table>

• CO₂ % and CH₄ % increases
• H₂ % decreases (from 80 to 60%)
• Carbon yield not affected

Taufer et al., Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products, Renewable Energy 173 (2021) 934-941
Carbon Balance

Results

[HTC @ 180 °C / 3 h] + [SCWG @ 600 °C / 30 s]

- HC: most of C retained (72%)
- AHL: 50% of C is gasified / 30% in liquid phase

Taufer et al., Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products, Renewable Energy 173 (2021) 934-941
- Hydrothermal carbonization (HTC) effectively treated digestate to produce hydrochar

- An HTC temperature of 250 °C converts the low-temperature volatiles to more stable compounds, producing a better fuel compared to 180 and 220 °C. This is supported by the high apparent activation energy at low conversions for HC250, but a lower apparent activation energy afterwards.

- Semi-continuous analysis of HTC liquids showed the presence of bio-inhibiting compounds

- Coupling with super-critical water gasification (SCWG) was possible, yielding a gas rich in H_2

- SCWG showed optimal results for operation at 600 °C and 30 s residence time

- Up to 50% of the carbon in the HTC liquids was valorised
People

- Vittoria BENEDETTI
- Francesco PATUZZI
- Matteo PECCHI
- Noah Luciano TAUFER

Prof. Yukihiro MATSUMURA

Eng. Daniele BASSO

https://www.hbigroup.it/hb-ponics/
Thank you for your attention

Integration of hydrothermal processes for fuels and hydrogen production from digestates

E-mail: marco.baratieri@unibz.it
Website: https://bnb.groups.unibz.it/