

Integration of hydrothermal processes for fuels and hydrogen production from digestates

Marco Baratieri

Cattle Manure

Anaerobic Digestion

In Europe, Directives 2016/2284/EU and 91/676/EEC **regulate the distribution of digestate on agricultural land**, limiting the intake of N to 170 kg ha⁻¹ year¹

Water pollution: nitrate and nutrients leach into the groundwater causing eutrophication and hypoxia

□ Air pollution: ammonia volatilization

Very high water-content and residual biological activity management issues

Negative economic and environmental impacts

 $\langle \square$

€

Introduction

Incineration

Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).

Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).

Aqueous HTC Liquid (AHL)

Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).

Aqueous HTC Liquid (AHL)

Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).

Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).

10

Digestate

Source: courtesy of Biogas-Wipptal

Digestate					
Ash content	[%wt]	26.83			
С	[%wt]	39.11			
н	[%wt]	4.87			
0	[%wt]	26.56			
N	[%wt]	1.94			
S	[%wt]	0.68			
HHV	[MJ/kg]	14.31			
LHV	[MJ/kg]	13.24			

- 2.5 kg per experiment
- Previously kept in refrigerator at 4 °C
- No pre-treatment

15 LAB

Freie Universität Bozen

Libera Università di Bolzano

Free University of Bolzano

unibz

Batch reactor – 4 L

Hydrochar – oven-dried at 105 °C for 24 h

Aqueous HTC Liquid

- 1. Electric furnace
- 2. HTC reactor
- 3. Temperature controller
- 4. HTC controller
- 5. Pressure transducer
- 6. Cold trap
- 7. Safety valve
- 8. Manometer

Scheme of the experimental lay-out

Operating condition Experimental		range	
Feedstock	digestate		5
Temperature [°C]	180	220	250
Pressure	endogenous		us
Residence time [h]	3		
Repetitions	3		

Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).

Freie Universität Bozen Libera Università di Bolzano

Free University of Bolzano

11111/

HC characterization results

		Digestate	HC180	HC220	HC250
Volatile matter	%wt _{dry}	55 ± 1	55 ± 1	53 ± 1	46.7 ± 0.3
Fixed carbon	%wt _{dry}	18 ± 1	17.9 ± 0.3	18.5 ± 0.4	20.7 ± 0.4
Ash	%wt _{dry}	26.6 ± 0.5	27.2 ± 0.8	28.8 ± 0.8	32.5 ± 0.7
Fuel ratio	-	0.33	0.33	0.34	0.44
С	%wt _{dry}	39.1 ± 0.5	40.1 ± 1.6	42.5 ± 0.8	45.0 ± 0.6
Н	%wt _{dry}	4.87 ± 0.05	5.01 ± 0.11	4.92 ± 0.15	4.54 ± 0.09
Ν	%wt _{dry}	1.94 ± 0.09	2.03 ± 0.06	2.16 ± 0.03	2.59 ± 0.11
S	%wt _{dry}	0.68 ± 0.03	0.71 ± 0.05	0.62 ± 0.01	0.59 ± 0.01
O* mbustion kinetics of hydrocl	%wt nar from cd₩-manure c	26.56 ligestate via thermograv	24.09 imetric analysis and peak decor	19.71 nvolution, Bioresource Techno	12.35 logy 353 (2022) 127142

10 2 1 0 4

1 - 0 + 0 - 1

HC characterization results

Van Krevelen Diagram

decarboxylation and dehydration reactions occur during the HTC process

Thermogravimetric analysis

- T: 40 900 °C
- Ramp rate (β): 5, 10, 20, 40 °C min⁻¹
- Purge gas: air, 20 mL min⁻¹
- Protective gas: N₂, 20 mL min⁻¹
- **Replicates: 3** ۲

TG – DTG curves

Four main peaks:

- 290°C Devolatilization 1.
- 370°C Combustion 2.
- 450°C Char combustion 3.
- 630°C Secondary degradation reactions 4.

Residual mass higher for HC obtained at higher T

TG [%]

(b

200

400

600

800

Isoconversional curves – KAS method

Benedetti et al., Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution, Bioresource Technology 353 (2022) 127142

Activation energy

Sample	E _a average [kJ mol ⁻¹]
HC 180°C	100
HC 220°C	88
HC 250°C	67

Benedetti et al., Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution, Bioresource Technology 353 (2022) 127142

Hydrothermal Carbonization - HTC

(Pre)treatment of biomass in hot (180-250 °C) compressed water at residence times varying from minutes to several hours. Ideal for biomass with high moisture content (> 60 %).

(AHL)

AHL characterization

Spillages every 30 min during operation

HPLC analysis

Glucose

.

- Lactic, Formic, Acetic, Fumaric Acid
- Hydroxymethylfurfural (HMF), Furfural

- Increased rate of hydrolysis, decarboxylation and dehydration that become the governing reactions of the process.
- Sugars, HMF and furfurals are less stable at high temperature and residence time.
- Polymerization and formation of secondary char.

NS LAB

Supercrtical water gasification: SCWG

Source: Yakaboylu et al., Supercritical water gasification of biomass

Hydrothermal process

- Alternative to conventional gasification and anaerobic digestion
- No need for pre-drying
- High temperature and pressure, low residence time
- Water in supercritical conditions becomes a very aggressive medium (and reactant)

Materials and methods

HIROSHIMA UNIVERSITY Feedstock Temperature Pressure Residence time Flow rate \oslash 5 0 5 3 2 1 05 6 0 5 7 9 11 12 5 10 8 9 Gas **SCWG** Liquid

- 1. Water
- 2. Pump
- 3. Feeding system
- 4. Pre-heater
- 6. Furnace 7. Heat exchanger 8. Cooling system

5. Temperature controller

9. Filter 10. Ball valve 11. Back pressure regulator 12. Sampling port

26

	•			
	[°C]	[MPa]	[s]	[mL/min]
	500			8.0
AHL 180 °C	550	25	30	7.0
	600			6.3
AHL 220 °C	500			8.0
	550	25	30	7.0
	600			6.3
AHL 250 °C	500			8.0
	550	25	30	7.0
	600			6.3

Effect of Temperature

Gas composition

- No differences among AHLs
- Gas generation rate increases with T
- H₂% increases with T

(other main gases: CO₂, CH₄)

Taufer et al., Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products, Rene wable Energy 173 (2021) 934-941

Effect of Temperature

Carbon balance

- SCWG 500: most of the carbon is in the liquid phase
- SCWG 600: most of the carbon is in the gas phase
- Amount of organic matter gasified increases with temperature

Effect of Residence Time

Feedstock	Temperature	Pressure	Residence time	Flow rate
	[°C]	[MPa]	[s]	[mL/min]
AHL 220 °C	600	25	15	12.5
			30	6.3
			60	3.1
			90	2.1

- Minor effect of residence time
- H₂ % max at 30 s
- C yield % in the gas phase max at 15 s

Taufer et al., Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products, Renewable Energy 173 (2021) 934-941

Effect of Feedstock Concentration

Feedstock	Temperature	Pressure	Residence time	Concentration
	[°C]	[MPa]	[s]	[%]
				6.7
AHL 180 °C	600	25	30	13.6
				20.0

- CO₂% and CH₄% increases
- H₂ % decreases (from 80 to 60%)
- Carbon yield not affected

Taufer et al., Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products, Renewable Energy 173 (2021) 934-941

Carbon Balance

٠

٠

Taufer et al., Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products, Rene wable Energy 173 (2021) 934-941

Remarks

□ Hydrothermal carbonization (HTC) effectively treated digestate to produce hydrochar

- An HTC temperature of 250 °C converts the low-temperature volatiles to more stable compounds, producing a better fuel compared to 180 and 220 °C. This is supported by the high apparent activation energy at low conversions for HC250, but a lower apparent activation energy afterwards.
- □ Semi-continuous analysis of HTC liquids showed the presence of bio-inhibiting compounds

 \Box Coupling with super-critical water gasification (SCWG) was possible, yielding a gas rich in H_2

□ SCWG showed optimal results for operation at 600 °C and 30 s residence time

People

Aknowledgements

- Vittoria BENEDETTI
- Francesco PATUZZI
- Matteo PECCHI
- Noah Luciano TAUFER


```
Prof. Yukihiko MATSUMURA
```


Eng. Daniele BASSO

Funding: Project **"HB Ponics"** (FESR1104; EFRE-FESR 2014-2020; CUP: B51B17000860008), financed by the European Regional Development Fund (ERDF) Investment for Growth and Jobs Programme 2014-2020.

https://www.hbigroup.it/hb-ponics/

HIROSHIMA UNIVERSITY

Thank you for your attention

Integration of hydrothermal processes for fuels and hydrogen production from digestates

E-mail: marco.baratieri@unibz.it

Website: https://bnb.groups.unibz.it/

9th International Conference on Sustainable Solid Waste Management

15-18 JUNE 2022

