9th International Conference on Sustainable Solid Waste Management

Comparative assessment of different Advance technologies for Treatment of Landfill Leachate

Click to edit Master subtitle style

Dr. Pratibha Gautam & Dr. Sunil kumar

FRIDAY 17, JUNE 2022

Contents

Landfill operation leading to generation of toxic leachate

Sludge/Waste dumping

Sludge/Waste compaction

Leachate extraction

Background of the Study

TSDF at Ankleshwar

Finding Alternative of such energy intensive process which can be used at other sites

Study Area

Landfill Details

Reference Code	Area Occupied	Capacity	Age (yrs)	Year of inception
HW-III	12000 m2	1.45 million tons	02	2016

WASTE TYPE

Industrial sludges, ETP sludges, Contaminated

Barrels, Contaminated/Discarded Products

P Gautam, S Kumar

LEACHATE

Soup generated (liquid extracted) from HW landfills contains elevated levels of dissolved solids, toxic elements, Chemical Oxygen Demand (COD) and Ammonical nitrogen etc.

Challenges

- * High COD/BOD ratio
- * High TDS
- * Highly complex pollutant matrix
- * Very less work on treatment of HWL leachate in comparison to MWL

Leachate Characteristics (average of three HWL)

Parameters	Values (mg/l)	Parameters	Values (mg/l)
рН	7.38 units	Total hardness (TH)	10490.7
Color	8200.3 Hazen units	Total alkalinity (TA)	8350.1
Oil and grease	6.09	Total dissolved solid (TDS)	264569.8
COD	34030	Total suspended solid (TSS)	1519.6
BOD	11204.07	Chloride (Cl)	135156.5
TN	3162.5	SULFIDE	485.8
TKN	2482.5	Sulfate (SO42-)	26918.5
Ammonical Nitrogen	2037.1	TOTAL PHENOL	19.8
Total phosphorus (TP)	27.1	Total hardness (TH)	10490.7
()	P Gautam,	S Kumar	

Leachate Characteristics (average of three HWL)

Parameters	Values (mg/l)	Parameters	Values (mg/l)
As	BDL	Hg	BDL
В	16.1	к	4571.9
Ва	BDL	Μα	2053.5
<u> </u>	4254 4	No	47007.9
Ca	1331.1	Na	4/00/.0
Cd	0.3	Zn	1.1
Cr	0.7	Ni	2.7
Cu	0.9	Pb	3.1
Fe	4.4		
As	BDL		
			Ĵ

Leachate Treatment Technologies

Advanced Oxidation Processes for Leachate Treatment

Experiments to assess the better technology for leachate treatment

Technology	% Reduction in Colour	% Reduction in COD	% Reduction in TOC	% Reduction in TDS
Coagulation using Polyaluminium chloride	45.2	22.1	6.9	4.8
Fenton Process	52.6	33.6	11.9	25.2
Electro fenton process using Iron Electrodes	70.9	46.9	28.7	28.9
Ozonation	45.9	59.2	36.2	11.5
Electrocoagulation using Iron electrodes	72.9	66.8	42.8	29.2

Electrocoagulation : A greener approach

- Easy operation
- Treated wastewater is palatable, clear, clorless and odorless
- Sludge is readily settleable and easy to dewater
- Flocs formed can be separated faster by filtration.
- Low TDS in treated waste water as compared to chemical treatment
- No use of chemicals solving neutralizing issues

- The gas bubbles produced carry the pollutant to the top of the solution where it can be more easily concentrated, collected and removed.
- Controlled electrically with no moving parts, thus requiring less majgtenance.
 P Gautam, S Kumar

ELECTROCOAGULATION : TECHNOLOGY FOR TREATMENT

Experimental set up and Procedure

MOC : Acrylic Capacity : 1 ltr Dimension : 12x10x14 cm Slots : 16

P Gautam, S Kumar

- Checking initial pH and COD of leachate sample
- Taking 1 liter leachate in reactor
- Connecting proper electrodes at proper distance with rectifier
- Initializing the process and taking samples at regular intervals of 30 min
- Analyzing parameters like COD, heavy metals etc from the final treated leachate
- Repeating the experiment with changing electrode and other operating parameters

Selection of Electrode

SELECTION OF ELECTRODE

ANOVA

CODRED

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	1500.623	3	500.208	44.112	.000
Within Groups	90.716	8	11.340		
Total	1591.339	11			

Post Hoc Test

CODRED

Tukey HSD^a

ELECTRODE		Subset for alpha = 0.05			
	Ν	1	2	3	
AI	3	34.4500			
MS	3		45.1600		
SS	3			55.7533	
GI	3			64.2100	
Sig.		1.000	1.000	.060	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3.000.

Experiments with SS

Grades of SS

Content	SS-202	SS-304	SS-316
С	0.15	0.08	0.08
Si	1	1	1
Mn	7.5-10	2	2
Р	0.06	0.045	0.045
S	0.03	0.03	0.03
Cr	17-19	18-20	16-18
Мо	-	-	2-3
Ni	4-6	8-10.5	10-14

Experiments with varying grades of SS

Sample of leachate pH = 7 = 1liter	Electrolysis time – 240 min	Voltage : 2.1 volts	Distance: 1.5 cm	No of electrodes : 02
---------------------------------------	-----------------------------	------------------------	---------------------	-----------------------

Grade of SS used	Initial COD (ppm)	% Reduction in COD	% Reduction in Colour
202	51000	43.14	73.8
304	45000	39.25	72.9
316	36000	61.11	74.6

Experiments with varying distance using SS-316

REVERSAL OF THE POLARITY

SOLUTION

Pratibha Gautam, CSIR-NEERI, AcSIR

Experiments with reversing polarity using SS-316

Sample of leachate = 1liter	pH = 7.4	Electrolysis time = 240m	Voltage : 2.1 volts	No of electrodes : 2	

Time for reversing current (min)	Initial COD (ppm)	% reductio n in COD	Max current density (mA/cm2)	% reductio n in colour	Total Chromium (Initial)	Total Chromium (Final)	
0	36000	61.11	34.13	74.6	0.3214	1.5703	
5	45000	24.44	20.29	64.9	0.5371	0.9173	
10	48000	45.83	20.61	70.8	0.4856	1.5663	

CHROMIUM LEACHING

Reversing polarity using mix electrode system

Sample of = 1lite	leachate er	pH = 7.	4 Electro	olysis time – 40 min	Voltage 2.1 volts	Dista	ance : No 5 cm	of electrodes : C)2
Time for reversing current (min)	Initial COD (ppm)	% reductio n in COD	% weight reduction at Cathode (SS-316)	% weight reduction at Anode (GI)	Max current density (mA/cm2)	% reductio n in colour	Total Chromium (Initial)	Total Chromium (Final)	
0	52000	46.15	0.47	11.09	34.86	51.12	0.4992	0.465	
10	52000	51.92	3.74	3.76	26.02	68.82	0.4992	0.7043	

Conclusion for selection of electrode/s

GI is the optimum electrode pertaining to the COD and colour reduction obtained in preliminary experiments

Experiments with GI plates (Varying distance)

1.5 cm distance looks optimum for EC using Gbelectrodes

P Gautam, S Kumar

EFFECT OF DISTANCE

ANOVA

CODRED

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	585.253	3	195.084	9.950	.004
Within Groups	156.857	8	19.607		
Total	742.110	11			

Post Hoc Test

CODRED

Tukey HSD^a

VAR.DIST		Subset for alpha = 0.05		
	N	1	2	
4.5 cm	3	45.6567		
6 cm	3	49.0633		
3 cm	3	52.9767	52.9767	
1.5 cm	3		64.2100	
Sig.		.256	.057	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3.000.

I.5 cm as preferable inter-electrode distance

Experiments with GI plates (Varying time)

Electrolysis time is directly proportional to % reduction in ©OD

P Gautam, S Kumar

ANOVA

CODRED

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	7936.987	3	2645.663	257.433	.000
Within Groups	82.217	8	10.277		
Total	8019.204	11			

Post Hoc Test

CODRED

Tukey HSD^a

ET		Subset for alpha = 0.05				
	Ν	1	2	3	4	
60 min	3	9.3167				
120 min	3		44.2200			
180 min	3			64.2100		
240 min	3				77.5800	
Sig.		1.000	1.000	1.000	1.000	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3.000.

ET is directly proportional to COD reduction

EFFECT OF ELECTROLYSIS TIME

Exper	riments v	vith	GI plates (vary	ing current density)
Sample of leachat = 1liter	e pH = 7	.2	Distance = 1.5 cm	Electrolysis time = 240 min
		12		
Current density A/cm2	% reduction in COD	10 _		
10.41	45.36	∞ _		
20.82	70.38	ත _		
31.23	77.58	_ 4		
41.64	80.79	2		
		0_		

P Gautam, S Kumar

ANOVA

EFFECT OF CURRENT DENSITY

CODRED

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	2316.699	3	772.233	165.753	.000
Within Groups	37.271	8	4.659		
Total	2353.970	11			

Post Hoc Test

CODRED

Tukey B^a

CD		Subset for alpha = 0.05			
	Ν	1	2	3	
10.41	3	45.3633			
20.82	3		70.3767		
31.23	3			77.5800	
41.64	3			80.7867	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3.000.

Experiments with GI plates (effect of pH)

EFFECT OF pH

ANOVA

CODRED

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	553.373	3	184.458	47.928	.000
Within Groups	30.789	8	3.849		
Total	584.162	11			

Post Hoc Test

CODRED

Tukey HSD^a

PH		Subset for alpha = 0.05			
	Ν	1	2	3	
3	3	62.0333			
4.6	3		70.3000		
10	3		74.2633		
7.1	3			80.7867	
Sig.		1.000	.139	1.000	

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 3.000.

Neutral pH is preferable

Optimization using RSM

Selection of variables

DOE for Optimization

Central Composite Design

Factors: 3 Replicates: 1 Base runs: 26 Total runs: 26 Base blocks: 1 Total blocks: 1

Two-level factorial: Full factorial

Cube points: 8 Center points in cube: 10 Axial points: 8 Center points in axial: 0

α: 1.41421

Personal comments: Factors>Axial Points

Design> Full with 13 runs

Std Order	RunOrder	PtType	Blocks	CD	ET	Dist	% COD Red
13	1	0	1	30	135	1.5	43.3
2	2	1	1	44.14214	60.75379	1.5	20.7
24	3	0	1	30	135	3	37.9
11	4	0	1	30	135	1.5	43.3
16	5	1	1	15.85786	209.2462	3	58.6
9	6	0	1	30	135	1.5	43.3
12	7	0	1	30	135	1.5	43.3
8	8	-1	1	30	240	1.5	76.7
1	9	1	1	15.85786	60.75379	1.5	10.3
23	10	0	1	30	135	3	37.9
19	11	-1	1	50	135	3	34.5
22	12	0	1	30	135	3	37.9
18	13	-1	1	10	135	3	41.4
5	14	-1	1	10	135	1.5	41.4
3	15	1	1	15.85786	209.2462	1.5	75.9
4	16	1	1	44.14214	209.2462	1.5	72.4
17	17	1	1	44.14214	209.2462	3	72.4
15	18	1	1	44.14214	60.75379	3	17.2
10	19	0	1	30	135	1.5	43.3
14	20	1	1	15.85786	60.75379	3	10.3
20	21	-1	1	30	30	3	1.2
26	22	0	1	30	135	3	37.9
25	23	0	1	30	135	3	37.9
21	24	-1	1	30	240	3	65.5
6	25	-1	1	50	135	1.5	48.3
7	26	-1	351	30	30	1.5	3.3

Pratibha Gautam, CSIR-NEERI, AcSIR

Response Surface Optimizer

Surface plot diagrams

Response Surface Optimizer

CONCLUSION

OPTIMUM PARAMETERS FOR ELECTROCOAGULATION

% REDUCTION IN PARAMETERS FOR TREATED LEACHATE

TOC: 54.7% ZINC: 63.6%

Pratibha Gautam, CSIR-NEERI, AcSIR

Cost incurred for the treatment of 1 KL of leachate of HWL

TC=(EP*EC) + (AP*ELC) + (STDC*SG) + (CP*CA) + MC + DP + LC - AM

Where, TC = Total Cost, EP = Electricity Price, EC = Energy consumption, AP= Anode Price, ELC = Electrodes consumption, STDC = Sludge transportation and disposal cost, SG = Sludge Generated, CP = Chemicals Price, CA = Chemicals Added, MC = Maintenance cost, DP = Depreciation, LC = Labor Cost, AM = Amortization

For our work, No external chemical was added, so CP = CA = 0. As the cost of treatment is being calculated at labscale, MC = DP = LC = AM = 0.

$$TC = (EP*EC) + (AP*ELC) + (STDC*SG)$$

$$\{ Part 1 \} \{ Part 2 \} \{ Part 3 \}$$

Pratibha Gautam, CSIR-NEERI, AcSIR

Cost incurred for the treatment of 1 KL of leachate of HWL

	U)
} { Part 3 }	
COST OF TREAT	MENT
Cost of Electrode	249.45
Cost of Electricity	336
Cost of Sludge Disposal	33.32
Cost of overall treatment	618.77
S. 618.77	37% Cost
RS 852	eduction
	<pre>} { Part 3 } COST OF TREAT Cost of Electrode Cost of Electricity Cost of Sludge Disposal Cost of overall treatment S. 618.77 27.3 Re RS. 852</pre>

TOTAL COST PER KL OF LEACHATE TREATED - RS. 852

ΓŪ

